3. we would need to create 1 master spatial lookup table or object. e.g. with both census geoid and boroct
```python
{
'geotype':'NTA2010',
'pff_geoname':'BK01',
'pff_geoid':'BK01',
'acs_geoid':''
},
{
'geotype':'CT2010',
'pff_geoname':'QN43',
'pff_geoid':'4157102',
'acs_geoid':'36081157102'
}
User experience
from pff import Pff
pff = Pff(api_key='XXXXXXXXX')
# if we just do a NTA level calculation, in the background it should be pulling tract level data and then aggregate to NTA level
pop25t29 = pff.calculate(pff_variable='pop25t29', geotype='NTA', year='2018')
pop25t29.head()
it should be showing the following fields: geotype, geoname, geoid, dataset, variable, c,e,m,p,z
Ideas:
c = Census(os.environ['API_KEY']) pd.DataFrame(c.acs5.get(('NAME', ','.join(variables)), {'for': 'block group:*','in' : 'state:36 county:081'},year=2018)))
User experience
it should be showing the following fields: geotype, geoname, geoid, dataset, variable, c,e,m,p,z