Open NHeLv1 opened 6 hours ago
Hi, Can you share more information on the tokenizer (ideally its configuration, as a tokenizer.json file for example) and the token ids for which this error is occurring?
I haven't used a JSON, just a config, and I don't get an error with REMI. The error that occurs when I call the tokenizer as below: `def generate(self, inputs, mask, max_new_tokens, tokenizer):
output = inputs.clone()
for _ in range(max_new_tokens):
current_seq_length = inputs.size(1)
# Truncate inputs if it exceeds context_length
if current_seq_length > self.config.max_len:
inputs = inputs[:, -self.config.max_len:]
# we only pass targets on training to calculate loss
mask = torch.ones_like(inputs.float().mean(dim = -1))
# print(inputs.shape, mask.shape)
logits, _ = self(inputs, mask)
# for all the batches, get the embeds for last predicted sequence
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=1)
probs = probs.squeeze(0).permute(1,0)
# print(probs.shape)
# get the probable token based on the input probs
idx_next = torch.multinomial(probs, num_samples=1)
idx_next = idx_next.permute(1,0).unsqueeze(0)
# print(idx_next.shape)
inputs = torch.cat([inputs, idx_next], dim=1)
output = torch.cat([output, idx_next], dim=1)
# output shape: [batch_size, seq_len, multitrack_num]
return [tokenizer(out.tolist()) for out in output]`
I trained an autoregressive Transformer using Octuple, but a KerError occurs when it eventually decodes into midi