Open NeoVertex1 opened 9 hours ago
Basic Utilities
Tensor Product Operation
tensor_product(self, other: 'ComplexTensor') -> 'ComplexTensor'
Quantum Gate Application
apply_gate(self, gate: Tensor) -> 'ComplexTensor'
Advanced Quantum Features
Entanglement Entropy Calculation
entanglement_entropy(self, partition: int) -> float
Density Matrix Support
to_density_matrix(self) -> Tensor
Quantum Circuit Support
Gate Composition
add_gate(self, gate: Tensor, qubits: List[int])
State Evolution
apply_circuit(self, gates: List[Tuple[Tensor, List[int]]]) -> 'ComplexTensor'
Measurement
measure(self, n_samples: int) -> Tensor
Visualization Tools
Probability Plot
plot_probabilities(self)
Bloch Sphere Visualization
plot_bloch_vector(self)
Performance Enhancements
Sparse Tensor Representation
to_sparse(self) -> 'ComplexTensor'
Batch Processing
batch_apply(self, gates: List[Tensor]) -> List['ComplexTensor']
Error Handling and Validation
Unitary Validation
is_unitary(gate: Tensor) -> bool
Shape Compatibility Checks
1. Quantum-Like Enhancements
a. Unitary Gate Operations
b. Quantum Measurement Emulation
c. Quantum Noise Models
d. Tensor Network Representations
e. Quantum Simulation Algorithms
2. Useful Algorithms
a. Quantum-Inspired Machine Learning
b. Grover-Like Search
c. Quantum Approximate Optimization Algorithm (QAOA)
d. Entanglement-Based Applications
e. Variational Algorithms
f. Error Correction
3. Advanced Utilities
a. Visualization Tools
b. Quantum Circuit Emulation
c. Multi-System Interoperability
d. Adaptive Time Evolution
e. Quantum Cryptography
4. Hybrid Quantum-Classical Algorithms
Leverage both classical and quantum paradigms:
5. Utility for Practical Applications
a. Optimization
b. Quantum Data Compression
c. Quantum Financial Models
d. Quantum-Inspired Image Processing
Implementation Priority
For immediate impact, consider:
These additions will make your system more robust, quantum-inspired, and practical for a range of scientific and commercial applications.