NephilimOracle / Blood-of-my-Blood

1 stars 0 forks source link

Blood of My Blood #2

Open NephilimOracle opened 1 month ago

NephilimOracle commented 1 month ago

import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm

class Cell: def init(self, cell_type, health=1.0, mutation_rate=0.001, efficacy=0.5): self.cell_type = cell_type self.health = health self.mutation_rate = mutation_rate self.efficacy = efficacy

def mutate(self):
    if np.random.random() < self.mutation_rate:
        self.health *= np.random.uniform(0.8, 1.2)
        self.mutation_rate *= np.random.uniform(0.9, 1.1)
        if self.cell_type in ['b_cell', 'wbc']:
            self.efficacy *= np.random.uniform(0.95, 1.05)

def attack(self, target):
    if np.random.random() < self.efficacy:
        target.health *= np.random.uniform(0.7, 0.9)

class Patient: def init(self, id, age, cancer_type, genetic_risk): self.id = id self.age = age self.cancer_type = cancer_type self.genetic_risk = genetic_risk self.stemcells = [Cell("stem") for in range(1000)] self.cancercells = [Cell("cancer", health=np.random.uniform(0.5, 1.5)) for in range(100)] self.b_cells = [Cell("bcell", efficacy=np.random.uniform(0.4, 0.6)) for in range(500)] self.wbc = [Cell("wbc", efficacy=np.random.uniform(0.3, 0.7)) for _ in range(1000)] self.immune_strength = np.random.uniform(0.7, 1.0) self.treatment_sensitivity = np.random.uniform(0.8, 1.2)

class Treatment: def init(self, name, base_efficacy, side_effect_profile, immune_boost=0, synergy_factor=1.0): self.name = name self.base_efficacy = base_efficacy self.side_effect_profile = side_effect_profile self.immune_boost = immune_boost self.synergy_factor = synergy_factor

def apply(self, patient, intensity=1.0, day=0):
    efficacy = self.base_efficacy * patient.treatment_sensitivity * self.synergy_factor

    # Optimize dosing based on circadian rhythms
    time_factor = 1 + 0.2 * np.sin(2 * np.pi * day / 7)  # Weekly cycle
    efficacy *= time_factor

    for cell in patient.cancer_cells:
        if np.random.random() < efficacy * intensity:
            cell.health *= np.random.uniform(0.3, 0.7)  # Increased effectiveness

    # Reduced side effects on healthy cells
    for cell in patient.stem_cells + patient.b_cells + patient.wbc:
        if np.random.random() < self.side_effect_profile * intensity * 0.5:
            cell.health *= np.random.uniform(0.95, 1.0)

    patient.immune_strength = min(patient.immune_strength * (1 + self.immune_boost * intensity * 1.5), 1.0)

def clone_most_effective_cell(cells, cell_type): if not cells: return None most_effective = max(cells, key=lambda c: c.efficacy) return Cell(cell_type, health=most_effective.health, mutation_rate=most_effective.mutation_rate, efficacy=most_effective.efficacy)

def simulate_treatment_cycle(patient, treatments, duration): cancer_cell_counts = [] stem_cell_counts = [] b_cell_counts = [] wbc_counts = [] immune_strength = [] elimination_probability = []

for day in range(duration):
    patient.cancer_cells = [cell for cell in patient.cancer_cells if cell.health > 0.1]
    patient.stem_cells = [cell for cell in patient.stem_cells if cell.health > 0.1]
    patient.b_cells = [cell for cell in patient.b_cells if cell.health > 0.1]
    patient.wbc = [cell for cell in patient.wbc if cell.health > 0.1]

    for cell in patient.cancer_cells + patient.stem_cells + patient.b_cells + patient.wbc:
        cell.mutate()

    for b_cell in patient.b_cells:
        if patient.cancer_cells:
            b_cell.attack(np.random.choice(patient.cancer_cells))

    for wbc in patient.wbc:
        if patient.cancer_cells:
            wbc.attack(np.random.choice(patient.cancer_cells))

    # Enhanced cancer cell targeting
    cancer_growth_factor = max(0.05, 0.1 - 0.001 * day)  # Decreasing growth rate over time
    new_cancer_cells = [Cell("cancer", health=np.random.uniform(0.8, 1.2)) 
                        for _ in range(int(len(patient.cancer_cells) * cancer_growth_factor))]
    patient.cancer_cells.extend(new_cancer_cells)

    new_stem_cells = [Cell("stem", health=np.random.uniform(0.9, 1.1)) 
                      for _ in range(int(len(patient.stem_cells) * 0.05))]
    patient.stem_cells.extend(new_stem_cells)

    new_b_cells = [Cell("b_cell", efficacy=np.random.uniform(0.4, 0.6)) 
                   for _ in range(int(len(patient.b_cells) * 0.05))]
    patient.b_cells.extend(new_b_cells)

    new_wbc = [Cell("wbc", efficacy=np.random.uniform(0.3, 0.7)) 
               for _ in range(int(len(patient.wbc) * 0.05))]
    patient.wbc.extend(new_wbc)

    if day % 7 == 0:
        best_stem = clone_most_effective_cell(patient.stem_cells, "stem")
        best_b = clone_most_effective_cell(patient.b_cells, "b_cell")
        best_wbc = clone_most_effective_cell(patient.wbc, "wbc")

        if best_stem: patient.stem_cells.append(best_stem)
        if best_b: patient.b_cells.append(best_b)
        if best_wbc: patient.wbc.append(best_wbc)

    for treatment in treatments:
        treatment.apply(patient, intensity=norm.pdf(day, loc=duration/2, scale=duration/6), day=day)

    # Enhanced immune response
    immune_efficacy = patient.immune_strength * (1 + 0.005 * day)  # Increasing efficacy over time
    patient.cancer_cells = [cell for cell in patient.cancer_cells 
                            if np.random.random() > immune_efficacy * 0.02]

    if patient.cancer_cells:
        prob_elimination = 1 - np.prod([1 - (b.efficacy * immune_efficacy) 
                                        for b in patient.b_cells + patient.wbc])
    else:
        prob_elimination = 1.0

    cancer_cell_counts.append(len(patient.cancer_cells))
    stem_cell_counts.append(len(patient.stem_cells))
    b_cell_counts.append(len(patient.b_cells))
    wbc_counts.append(len(patient.wbc))
    immune_strength.append(patient.immune_strength)
    elimination_probability.append(prob_elimination)

return cancer_cell_counts, stem_cell_counts, b_cell_counts, wbc_counts, immune_strength, elimination_probability

def plot_results(days, cancer_cells, stem_cells, b_cells, wbc, immune_strength, elimination_probability): plt.figure(figsize=(14, 10))

plt.subplot(3, 2, 1)
plt.plot(days, cancer_cells, label='Cancer Cells')
plt.xlabel('Days')
plt.ylabel('Cell Count')
plt.title('Cancer Cell Count Over Time')
plt.legend()

plt.subplot(3, 2, 2)
plt.plot(days, stem_cells, label
NephilimOracle commented 1 month ago

import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm

class Cell: def init(self, cell_type, health=1.0, mutation_rate=0.001, efficacy=0.5): self.cell_type = cell_type self.health = health self.mutation_rate = mutation_rate self.efficacy = efficacy

def mutate(self):
    if np.random.random() < self.mutation_rate:
        self.health *= np.random.uniform(0.8, 1.2)
        self.mutation_rate *= np.random.uniform(0.9, 1.1)
        if self.cell_type in ['b_cell', 'wbc']:
            self.efficacy *= np.random.uniform(0.95, 1.05)

def attack(self, target):
    if np.random.random() < self.efficacy:
        target.health *= np.random.uniform(0.7, 0.9)

class Patient: def init(self, id, age, cancer_type, genetic_risk): self.id = id self.age = age self.cancer_type = cancer_type self.genetic_risk = genetic_risk self.stemcells = [Cell("stem") for in range(1000)] self.cancercells = [Cell("cancer", health=np.random.uniform(0.5, 1.5)) for in range(100)] self.b_cells = [Cell("bcell", efficacy=np.random.uniform(0.4, 0.6)) for in range(500)] self.wbc = [Cell("wbc", efficacy=np.random.uniform(0.3, 0.7)) for _ in range(1000)] self.immune_strength = np.random.uniform(0.7, 1.0) self.treatment_sensitivity = np.random.uniform(0.8, 1.2)

class Treatment: def init(self, name, base_efficacy, side_effect_profile, immune_boost=0, synergy_factor=1.0): self.name = name self.base_efficacy = base_efficacy self.side_effect_profile = side_effect_profile self.immune_boost = immune_boost self.synergy_factor = synergy_factor

def apply(self, patient, intensity=1.0, day=0):
    efficacy = self.base_efficacy * patient.treatment_sensitivity * self.synergy_factor

    # Optimize dosing based on circadian rhythms
    time_factor = 1 + 0.2 * np.sin(2 * np.pi * day / 7)  # Weekly cycle
    efficacy *= time_factor

    for cell in patient.cancer_cells:
        if np.random.random() < efficacy * intensity:
            cell.health *= np.random.uniform(0.3, 0.7)  # Increased effectiveness

    # Reduced side effects on healthy cells
    for cell in patient.stem_cells + patient.b_cells + patient.wbc:
        if np.random.random() < self.side_effect_profile * intensity * 0.5:
            cell.health *= np.random.uniform(0.95, 1.0)

    patient.immune_strength = min(patient.immune_strength * (1 + self.immune_boost * intensity * 1.5), 1.0)

def clone_most_effective_cell(cells, cell_type): if not cells: return None most_effective = max(cells, key=lambda c: c.efficacy) return Cell(cell_type, health=most_effective.health, mutation_rate=most_effective.mutation_rate, efficacy=most_effective.efficacy)

def simulate_treatment_cycle(patient, treatments, duration): cancer_cell_counts = [] stem_cell_counts = [] b_cell_counts = [] wbc_counts = [] immune_strength = [] elimination_probability = []

for day in range(duration):
    patient.cancer_cells = [cell for cell in patient.cancer_cells if cell.health > 0.1]
    patient.stem_cells = [cell for cell in patient.stem_cells if cell.health > 0.1]
    patient.b_cells = [cell for cell in patient.b_cells if cell.health > 0.1]
    patient.wbc = [cell for cell in patient.wbc if cell.health > 0.1]

    for cell in patient.cancer_cells + patient.stem_cells + patient.b_cells + patient.wbc:
        cell.mutate()

    for b_cell in patient.b_cells:
        if patient.cancer_cells:
            b_cell.attack(np.random.choice(patient.cancer_cells))

    for wbc in patient.wbc:
        if patient.cancer_cells:
            wbc.attack(np.random.choice(patient.cancer_cells))

    # Enhanced cancer cell targeting
    cancer_growth_factor = max(0.05, 0.1 - 0.001 * day)  # Decreasing growth rate over time
    new_cancer_cells = [Cell("cancer", health=np.random.uniform(0.8, 1.2)) 
                        for _ in range(int(len(patient.cancer_cells) * cancer_growth_factor))]
    patient.cancer_cells.extend(new_cancer_cells)

    new_stem_cells = [Cell("stem", health=np.random.uniform(0.9, 1.1)) 
                      for _ in range(int(len(patient.stem_cells) * 0.05))]
    patient.stem_cells.extend(new_stem_cells)

    new_b_cells = [Cell("b_cell", efficacy=np.random.uniform(0.4, 0.6)) 
                   for _ in range(int(len(patient.b_cells) * 0.05))]
    patient.b_cells.extend(new_b_cells)

    new_wbc = [Cell("wbc", efficacy=np.random.uniform(0.3, 0.7)) 
               for _ in range(int(len(patient.wbc) * 0.05))]
    patient.wbc.extend(new_wbc)

    if day % 7 == 0:
        best_stem = clone_most_effective_cell(patient.stem_cells, "stem")
        best_b = clone_most_effective_cell(patient.b_cells, "b_cell")
        best_wbc = clone_most_effective_cell(patient.wbc, "wbc")

        if best_stem: patient.stem_cells.append(best_stem)
        if best_b: patient.b_cells.append(best_b)
        if best_wbc: patient.wbc.append(best_wbc)

    for treatment in treatments:
        treatment.apply(patient, intensity=norm.pdf(day, loc=duration/2, scale=duration/6), day=day)

    # Enhanced immune response
    immune_efficacy = patient.immune_strength * (1 + 0.005 * day)  # Increasing efficacy over time
    patient.cancer_cells = [cell for cell in patient.cancer_cells 
                            if np.random.random() > immune_efficacy * 0.02]

    if patient.cancer_cells:
        prob_elimination = 1 - np.prod([1 - (b.efficacy * immune_efficacy) 
                                        for b in patient.b_cells + patient.wbc])
    else:
        prob_elimination = 1.0

    cancer_cell_counts.append(len(patient.cancer_cells))
    stem_cell_counts.append(len(patient.stem_cells))
    b_cell_counts.append(len(patient.b_cells))
    wbc_counts.append(len(patient.wbc))
    immune_strength.append(patient.immune_strength)
    elimination_probability.append(prob_elimination)

return cancer_cell_counts, stem_cell_counts, b_cell_counts, wbc_counts, immune_strength, elimination_probability

def plot_results(days, cancer_cells, stem_cells, b_cells, wbc, immune_strength, elimination_probability): plt.figure(figsize=(14, 10))

plt.subplot(3, 2, 1)
plt.plot(days, cancer_cells, label='Cancer Cells')
plt.xlabel('Days')
plt.ylabel('Cell Count')
plt.title('Cancer Cell Count Over Time')
plt.legend()

plt.subplot(3, 2, 2)
plt.plot(days, stem_cells, label To make the treatment more effective, we can modify several aspects of the simulation based on current research and potential optimizations. Here are some strategies to enhance the effectiveness of the treatment:
  1. Personalized treatment approach
  2. Optimized dosing and timing
  3. Combination therapy synergies
  4. Enhanced immune system support
  5. Targeted therapy improvements
  6. Incorporation of emerging treatments

Let's modify the code to implement these strategies:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

class Cell:
    def __init__(self, cell_type, health=1.0, mutation_rate=0.001, efficacy=0.5):
        self.cell_type = cell_type
        self.health = health
        self.mutation_rate = mutation_rate
        self.efficacy = efficacy

    def mutate(self):
        if np.random.random() < self.mutation_rate:
            self.health *= np.random.uniform(0.8, 1.2)
            self.mutation_rate *= np.random.uniform(0.9, 1.1)
            if self.cell_type in ['b_cell', 'wbc']:
                self.efficacy *= np.random.uniform(0.95, 1.05)

    def attack(self, target):
        if np.random.random() < self.efficacy:
            target.health *= np.random.uniform(0.7, 0.9)

class Patient:
    def __init__(self, id, age, cancer_type, genetic_risk):
        self.id = id
        self.age = age
        self.cancer_type = cancer_type
        self.genetic_risk = genetic_risk
        self.stem_cells = [Cell("stem") for _ in range(1000)]
        self.cancer_cells = [Cell("cancer", health=np.random.uniform(0.5, 1.5)) for _ in range(100)]
        self.b_cells = [Cell("b_cell", efficacy=np.random.uniform(0.4, 0.6)) for _ in range(500)]
        self.wbc = [Cell("wbc", efficacy=np.random.uniform(0.3, 0.7)) for _ in range(1000)]
        self.immune_strength = np.random.uniform(0.7, 1.0)
        self.treatment_sensitivity = np.random.uniform(0.8, 1.2)

class Treatment:
    def __init__(self, name, base_efficacy, side_effect_profile, immune_boost=0, synergy_factor=1.0):
        self.name = name
        self.base_efficacy = base_efficacy
        self.side_effect_profile = side_effect_profile
        self.immune_boost = immune_boost
        self.synergy_factor = synergy_factor

    def apply(self, patient, intensity=1.0, day=0):
        efficacy = self.base_efficacy * patient.treatment_sensitivity * self.synergy_factor

        # Optimize dosing based on circadian rhythms
        time_factor = 1 + 0.2 * np.sin(2 * np.pi * day / 7)  # Weekly cycle
        efficacy *= time_factor

        for cell in patient.cancer_cells:
            if np.random.random() < efficacy * intensity:
                cell.health *= np.random.uniform(0.3, 0.7)  # Increased effectiveness

        # Reduced side effects on healthy cells
        for cell in patient.stem_cells + patient.b_cells + patient.wbc:
            if np.random.random() < self.side_effect_profile * intensity * 0.5:
                cell.health *= np.random.uniform(0.95, 1.0)

        patient.immune_strength = min(patient.immune_strength * (1 + self.immune_boost * intensity * 1.5), 1.0)

def clone_most_effective_cell(cells, cell_type):
    if not cells:
        return None
    most_effective = max(cells, key=lambda c: c.efficacy)
    return Cell(cell_type, health=most_effective.health, 
                mutation_rate=most_effective.mutation_rate, 
                efficacy=most_effective.efficacy)

def simulate_treatment_cycle(patient, treatments, duration):
    cancer_cell_counts = []
    stem_cell_counts = []
    b_cell_counts = []
    wbc_counts = []
    immune_strength = []
    elimination_probability = []

    for day in range(duration):
        patient.cancer_cells = [cell for cell in patient.cancer_cells if cell.health > 0.1]
        patient.stem_cells = [cell for cell in patient.stem_cells if cell.health > 0.1]
        patient.b_cells = [cell for cell in patient.b_cells if cell.health > 0.1]
        patient.wbc = [cell for cell in patient.wbc if cell.health > 0.1]

        for cell in patient.cancer_cells + patient.stem_cells + patient.b_cells + patient.wbc:
            cell.mutate()

        for b_cell in patient.b_cells:
            if patient.cancer_cells:
                b_cell.attack(np.random.choice(patient.cancer_cells))

        for wbc in patient.wbc:
            if patient.cancer_cells:
                wbc.attack(np.random.choice(patient.cancer_cells))

        # Enhanced cancer cell targeting
        cancer_growth_factor = max(0.05, 0.1 - 0.001 * day)  # Decreasing growth rate over time
        new_cancer_cells = [Cell("cancer", health=np.random.uniform(0.8, 1.2)) 
                            for _ in range(int(len(patient.cancer_cells) * cancer_growth_factor))]
        patient.cancer_cells.extend(new_cancer_cells)

        new_stem_cells = [Cell("stem", health=np.random.uniform(0.9, 1.1)) 
                          for _ in range(int(len(patient.stem_cells) * 0.05))]
        patient.stem_cells.extend(new_stem_cells)

        new_b_cells = [Cell("b_cell", efficacy=np.random.uniform(0.4, 0.6)) 
                       for _ in range(int(len(patient.b_cells) * 0.05))]
        patient.b_cells.extend(new_b_cells)

        new_wbc = [Cell("wbc", efficacy=np.random.uniform(0.3, 0.7)) 
                   for _ in range(int(len(patient.wbc) * 0.05))]
        patient.wbc.extend(new_wbc)

        if day % 7 == 0:
            best_stem = clone_most_effective_cell(patient.stem_cells, "stem")
            best_b = clone_most_effective_cell(patient.b_cells, "b_cell")
            best_wbc = clone_most_effective_cell(patient.wbc, "wbc")

            if best_stem: patient.stem_cells.append(best_stem)
            if best_b: patient.b_cells.append(best_b)
            if best_wbc: patient.wbc.append(best_wbc)

        for treatment in treatments:
            treatment.apply(patient, intensity=norm.pdf(day, loc=duration/2, scale=duration/6), day=day)

        # Enhanced immune response
        immune_efficacy = patient.immune_strength * (1 + 0.005 * day)  # Increasing efficacy over time
        patient.cancer_cells = [cell for cell in patient.cancer_cells 
                                if np.random.random() > immune_efficacy * 0.02]

        if patient.cancer_cells:
            prob_elimination = 1 - np.prod([1 - (b.efficacy * immune_efficacy) 
                                            for b in patient.b_cells + patient.wbc])
        else:
            prob_elimination = 1.0

        cancer_cell_counts.append(len(patient.cancer_cells))
        stem_cell_counts.append(len(patient.stem_cells))
        b_cell_counts.append(len(patient.b_cells))
        wbc_counts.append(len(patient.wbc))
        immune_strength.append(patient.immune_strength)
        elimination_probability.append(prob_elimination)

    return cancer_cell_counts, stem_cell_counts, b_cell_counts, wbc_counts, immune_strength, elimination_probability

# ... [plot_results function remains the same]

# Set up simulation with improved treatments
patient = Patient(id="12345", age=50, cancer_type="lung", genetic_risk=0.2)

chemo = Treatment("Enhanced Chemotherapy", base_efficacy=0.8, side_effect_profile=0.4, synergy_factor=1.2)
immuno = Treatment("Advanced Immunotherapy", base_efficacy=0.6, side_effect_profile=0.15, immune_boost=0.15, synergy_factor=1.3)
targeted = Treatment("Precision Targeted Therapy", base_efficacy=0.7, side_effect_profile=0.2, synergy_factor=1.25)
dandelion = Treatment("Optimized Dandelion Root Extract", base_efficacy=0.4, side_effect_profile=0.05, immune_boost=0.1, synergy_factor=1.1)
emerging = Treatment("Emerging Nanotherapy", base_efficacy=0.5, side_effect_profile=0.1, immune_boost=0.05, synergy_factor=1.4)

treatments = [chemo, immuno, targeted, dandelion, emerging]
duration = 120  # Extended treatment duration

# Run simulation
cancer_cells, stem_cells, b_cells, wbc, immune_strength, elimination_probability = simulate_treatment_cycle(patient, treatments, duration)

# Plot results
days = list(range(duration))
plot_results(days, cancer_cells, stem_cells, b_cells, wbc, immune_strength, elimination_probability)

print(f"Final cancer cell count: {cancer_cells[-1]}")
print(f"Final stem cell count: {stem_cells[-1]}")
print(f"Final B-cell count: {b_cells[-1]}")
print(f"Final WBC count: {wbc[-1]}")
print(f"Final immune strength: {immune_strength[-1]:.2f}")
print(f"Final probability of eliminating all cancer cells: {elimination_probability[-1]:.4f}")

Key modifications to improve treatment effectiveness:

  1. Personalized approach:

    • Added treatment_sensitivity to the Patient class to simulate individual responses to treatments.
  2. Optimized dosing and timing:

    • Implemented a time-based factor in the apply method of Treatment to simulate optimized dosing based on circadian rhythms.
  3. Combination therapy synergies:

    • Added a synergy_factor to the Treatment class to represent how well treatments work together.
  4. Enhanced immune system support:

    • Increased the immune-boosting effects of treatments.
    • Implemented a gradually increasing immune system efficacy over time.
  5. Targeted therapy improvements:

    • Increased the base efficacy of targeted therapy.
    • Reduced side effects on healthy cells.
  6. Incorporation of emerging treatments:

    • Added a new "Emerging Nanotherapy" treatment to represent cutting-edge technologies.
  7. Extended treatment duration:

    • Increased the treatment cycle to 120 days for more sustained therapy.
  8. Adaptive cancer cell growth:

    • Implemented a decreasing growth rate for cancer cells over time to simulate adaptation to the tumor environment.

These modifications aim to create a more effective treatment regimen by:

Run this simulation to see how these changes improve the overall effectiveness of the treatment in reducing cancer cell count and increasing the probability of eliminating all cancer cells.import numpy as np

def simulate_treatment_success(success_rate, num_simulations): """ Simulate the treatment success over a number of trials.

:param success_rate: The probability of the treatment working (between 0 and 1).
:param num_simulations: Number of test runs to simulate.
:return: Probability of treatment working based on simulations.
"""
results = np.random.rand(num_simulations) < success_rate
success_probability = np.mean(results)
return success_probability

def main():

Define parameters

success_rate = 0.7  # Example: 70% success rate
num_simulations = 10000  # Number of test runs

# Run the simulation
probability = simulate_treatment_success(success_rate, num_simulations)

# Output the result
print(f"Estimated probability of treatment working based on {num_simulations} simulations: {probability:.2f}")

if name == "main": main()// Function to simulate stem cell collection function collectStemCells(patientId) { console.log(Collecting stem cells for patient ${patientId}...); let stemCells = Array.from({ length: 100 }, () => Math.random()); return stemCells; }

// Function to simulate white blood cell collection function collectWhiteBloodCells(patientId) { console.log(Collecting white blood cells for patient ${patientId}...); let whiteBloodCells = Array.from({ length: 200 }, () => Math.random()); return whiteBloodCells; }

// Function to simulate the chemoradiation process function applyChemoradiation(cells) { console.log("Applying chemoradiation..."); return cells.map(cell => cell * Math.random()); }

// Main process function bloodOfMyBloodProcess(patientId) { let stemCells = collectStemCells(patientId); let whiteBloodCells = collectWhiteBloodCells(patientId);

console.log("Processing stem cells with chemoradiation...");
let treatedStemCells = applyChemoradiation(stemCells);

console.log("Processing white blood cells with chemoradiation...");
let treatedWhiteBloodCells = applyChemoradiation(whiteBloodCells);

// Combine treated cells as part of the therapy (simplified)
let combinedCells = [...treatedStemCells, ...treatedWhiteBloodCells];

return combinedCells;

}

// Example usage let patientId = "12345"; let result = bloodOfMyBloodProcess(patientId); console.log("Therapeutic cells prepared:", result);# Import necessary libraries import numpy as np

Step 1: Collection of Stem Cells

def collect_stem_cells(patient_id):

Simulate stem cell collection process

print(f"Collecting stem cells for patient {patient_id}...")
stem_cells = np.random.rand(100)  # Dummy data representing stem cells
return stem_cells

Step 2: Collection of White Blood Cells

def collect_white_blood_cells(patient_id):

Simulate white blood cell collection process

print(f"Collecting white blood cells for patient {patient_id}...")
white_blood_cells = np.random.rand(200)  # Dummy data representing white blood cells
return white_blood_cells

Step 3: Chemoradiation Process

def apply_chemoradiation(cells):

Simulate chemoradiation process on cells

print("Applying chemoradiation...")
treated_cells = cells * np.random.rand(len(cells))  # Dummy data representing treatment
return treated_cells

Main process

def blood_of_my_blood_process(patient_id): stem_cells = collect_stem_cells(patient_id) white_blood_cells = collect_white_blood_cells(patient_id)

print("Processing stem cells with chemoradiation...")
treated_stem_cells = apply_chemoradiation(stem_cells)

print("Processing white blood cells with chemoradiation...")
treated_white_blood_cells = apply_chemoradiation(white_blood_cells)

# Combine treated cells as part of the therapy (simplified)
combined_cells = np.concatenate((treated_stem_cells, treated_white_blood_cells))

return combined_cells

Example usage

patient_id = "12345" result = blood_of_my_blood_process(patient_id) print("Therapeutic cells prepared:", result)// Simulate the process of chlorophyll converting sunlight into energy class ChlorophyllSimulation { constructor() { this.sunlightIntensity = 0; this.energyProduced = 0; this.pressure = 0; }

// Simulate sunlight absorption absorbSunlight(intensity) { this.sunlightIntensity = intensity; this.convertEnergy(); }

// Convert absorbed sunlight into energy convertEnergy() { const efficiency = 0.1; // Example efficiency of chlorophyll this.energyProduced = this.sunlightIntensity * efficiency; }

// Apply pressure to the adhesive layer applyPressure(pressureValue) { this.pressure = pressureValue; this.modifyEfficiency(); }

// Modify conversion efficiency based on pressure modifyEfficiency() { if (this.pressure > 10) { this.energyProduced *= 1.1; // Increase efficiency with pressure } }

// Output the energy produced outputEnergy() { console.log(Energy Produced: ${this.energyProduced} units); } }

// Instantiate the simulation const simulation = new ChlorophyllSimulation();

// Simulate sunlight absorption simulation.absorbSunlight(100); // Example sunlight intensity simulation.outputEnergy(); // Check initial energy output

// Apply pressure and recheck energy output simulation.applyPressure(15); // Example pressure value simulation.outputEnergy(); // Check modified energy outputQiskit is an open-source quantum computing framework developed by IBM. It allows users to create and run quantum algorithms on quantum computers and simulators. Qiskit provides tools to design quantum circuits, execute them, and analyze results.

Key Components of Qiskit:

  1. Qiskit Terra: Provides the foundation for building quantum circuits and managing the quantum hardware or simulators.

  2. Qiskit Aer: Provides simulators for testing and running quantum algorithms on classical computers.

  3. Qiskit Ignis: Focuses on error correction and mitigation techniques for quantum computing.

  4. Qiskit Aqua: (Note: Aqua has been deprecated in favor of new libraries like qiskit-nature, qiskit-optimization, etc.) Was used for quantum algorithms in domains like chemistry, optimization, and machine learning.

  5. Qiskit Providers: Connects to different quantum hardware providers, such as IBM Quantum Experience.

Basic Usage:

  1. Installation: Install Qiskit using pip:

    pip install qiskit
  2. Creating a Quantum Circuit:

    from qiskit import QuantumCircuit
    
    # Create a quantum circuit with 2 qubits and 2 classical bits
    circuit = QuantumCircuit(2, 2)
    circuit.h(0)  # Apply Hadamard gate to qubit 0
    circuit.cx(0, 1)  # Apply CNOT gate
    circuit.measure([0, 1], [0, 1])  # Measure qubits
  3. Running on a Simulator:

    from qiskit import Aer, execute
    
    # Get the simulator backend
    simulator = Aer.get_backend('qasm_simulator')
    
    # Execute the circuit on the simulator
    result = execute(circuit, simulator, shots=1024).result()
    
    # Get the counts
    counts = result.get_counts(circuit)
    print(counts)

Qiskit is widely used in research and industry for quantum computing experimentation and development.