NirViaje / nirviaje.github.io

https://nirviaje.github.io/
17 stars 4 forks source link

Asteroid mining: what out there? #55

Open NirViaje opened 5 years ago

NirViaje commented 5 years ago

天上到底有什么

说好的小行星采矿呢

背景音乐是Lucy in the sky with diamonds,来自于五十年前的the Beatles披头士乐队,风格是迷幻摇滚大家可以听听,这个标题与今天的主题特别的搭。

778px-Solar_power_satellite_from_an_asteroid

A NASA-sponsored study on space manufacturing held at Ames Research Center (ARC) in summer of 1977 provided much of the technical basis for the painting. "Asteroid-1" is the central long structure and the propulsion unit is the long tubular structure enveloped by stiffening yard arms and guy wires. Solar cells running the length of the propulsion system convert the sunlight into electricity which is used to power the propulsion system. During the mission these solar arrays would be oriented toward the Sun to gather maximum power. In the left foreground is an asteroid mining unit, doing actual mining work. An orbital construction platform in permanent orbit provides power, supplies depot and work volume within which work proceeds. Artist concept by Denise Watt.

小行星采矿最早的概念可能开始于20世纪70年代,那确实也是一个太空大跃进的时代。

比较集中的提到小行星采矿的书是1997年,Arizona大学的John S. Lewis约翰 · 刘易斯教授出版的Mining the Sky: Untold Riches from the Asteroids, Comets, and Planets。书中给出了一系列小行星的潜在价值也经常被作为之后的依据,比如经常提到的3554 Amun(1986 EB),在这本书里估计价值20万亿美元,这也是之后小行星经济学的开始。

我知道肯定许多人太长不看,先上结论。想要上天挖铂金捞贵金属的来说,你要处理掉和你要获得的铂金一样价值的铁,计算结果如下:

典型的总价值

总质量,百米尺度百万立方米约数百万吨,按铁的价值(其他元素总价值相当)约十亿美元级,千米尺度约十亿吨,万亿美元级。

Asteroid 3554 Amun The NEA Asteroid 3554 Amun is two kilometer in diameter and is about the size of a typical open-pit mine. It has a mass of thirty billion (30,000,000,000) metric tons. Assuming the composition of a typical iron meteorite, the following metals could be obtained:

$8 Trillion Iron and Nickel
6 Trillion Cobalt
6 Trillion Platinum Group including: platinum, osmium, iridium, palladium, etc
  Platinum Group including: platinum, osmium, iridium, palladium, etc
  Non-Metallic: carbon, nitrogen, sulfur, and phosphorus
$20 Trillion Total Market Value based upon values on earth

这个道理就和说世界上所有的钻石全给一个人开采了他就是超级富翁一样,(一个人开采完

处理完数以万吨的铁之后富集的铂金才够开过来采矿飞船的船票一个零头,不知道这么个结论大家什么感觉。进一步,如果是这样那天上的资源跟我们有几毛钱关系呢?

想知道为什么小行星看起来这么值钱,就要知道小行星上有什么东西比较值钱

要知道第一颗小行星采样返回的探测器隼鸟号在2005年才着陆,在这之前人们是如何知道天上的小行星是什么成分的?

就好像观察太阳元素,行星大气组份,遥远的星系的成分一样,主要靠光。并且对于这样一块大石头的小行星,还有把它们的光谱和掉落到地面上的陨石对应起来。

按现在不严谨的说,按照地面陨石与小行星光谱观测的对应关系小行星粗略的分成C、S、M三类,分别代表碳质、石质、与几乎纯金属的小行星。随着光谱数据和小行星测光体系更加精细的建立,以上小行星分型被分成了更多光谱亚型。有了光谱数据,对应上地面陨石的成分,我们就得到了天上小行星的可能表面组份。姑且猜测小行星外表面和内部材质是均匀的,这就得到了下面小行星组份的这张表,注意前几列比如C开头的都是碳质球粒陨石的亚型。

image

MadeInSpace, NIAC, 2017, Project+RAMA+NIAC+Phase+I+Final+Report, p25

在这张表里我们可以看到:比如C开头的碳质球粒[5]小行星含碳,元素组成丰富,甚至还含有水(往往是水合矿物);L开头的两列及之后的都不含水,前面两类主要是普通球粒陨石与经历变质作用的球粒陨石;后面S-type的主要是石头应该是主要经历了成星的变质作用;再有一类M-type,可以看到除了夹杂的橄榄岩碎石,几乎就是以铁和镍为主的纯金属。

太长不看的可以直接往后跳

下面的段落里我们说说上面的陨石——小行星组份结构是怎么来的,尤其是为什么会有水以及几乎纯的铁镍金属。

之前的球粒陨石里说的球粒指的是一些毫米大小的球形颗粒。它们的组成一般认为来源于45亿年之前原始太阳星云凝聚产生的最原始的物质,包括硅酸盐球粒和铁镍合金的小颗粒等等。特别的,碳质球粒指的是含有大量挥发性组份含水含有碳的化合物甚至含有氨基酸和稠环芳烃等的球粒组份,与太阳系最早的组成相似。历经亿万年的变迁却没有太多变化简直可以说是太阳系的活化石了,小行星探测项目往往会提到太阳系起源和生命起源的原因也来自于此。说到这些,我们就要说到45亿年前我们太阳系刚刚形成的样子。

6-Figure2-1

Protoplanetary_Disk_Simulated_Spiral_Arm_vs_Observational_Data

MWC 758的吸积盘情况,其中右侧为欧南天文台VLT真实数据左侧为模拟,悬臂结构清晰可见

Artist’s_impression_of_the_water_snowline_around_the_young_star_V883_Orionis

包含雪线结构的V883 Orionis艺术家想象图,原始数据来自于ALMA阿塔卡马大型亚毫米波射电阵列

819px-Pitch_perfect_in_DSHARP_at_ALMA

更多ALMA观测到的原行星盘例子

前面提到的碳质球粒,和铁镍合金颗粒,来自于太阳系形成早期的吸积盘到原行星盘这个过程。

image

形成过程,星子聚集,

diferentiation-slide_13

热化/引力分化/火山岩浆高金属含量,

element-origins-periods-file-20171024-30605-ei0pxa

neutron+star+crash-Post - October 2013 (7) - 1

gravity-wave-neutron-crash-gold_2_1508159434312

nuclear-burning-in-massive-stars

铁丰度,中子星事件,更为年轻的星系是非常缺乏重金属的。

事实上作为本身不发光的小天体,小行星平常非常非常暗,往往绝对星等18等甚至到接近30等(小行星绝对星等的意义略有不同,大致可以认为是小行星与太阳距离1AU一个地日距离天文单位时从太阳方向看过去的亮度,这正是满月时观看的角度)。这也意味着光谱测量非常困难,上面说的光谱分型事实上更多的是多色分光的分型,简单的说就是用望远镜看颜色,并且这需要上米甚至几米口径的望远镜才比较好。这大致能说明为什么小行星的观测尤其是成分确定这么困难了,所以有别的方法吗?

image

因为天文学上来说小行星相对比较近(尤其是近地小行星,典型的也就地球到太阳那么远吧),所以另一类型观测方法就是雷达,能够支持这一任务的雷达不多,全世界主要的也就上图左侧Arecibo之前世界第一的300米大锅,还有上图右侧的Goldenstone(说到这里,你可以回想一下把雷达对准木星的红岸工程叶文洁)。在小行星非常接近地球的时候(这里的非常接近也是距离百万公里记甚至上千万公里,上十倍地月距离是正常情况)射电雷达观测数据甚至可以合成出小行星的3D影像。

pia22185 pia22185 2015TB145 nov01

(436724) 2011 UW158

对于可能经过地球附近的几公里到几百米甚至十几米的中小尺寸小行星,它们往往太小了以至于往往只有接近地球的时候才合适观测到。说是小,摆在你面前的时候并不小,就相当于一座山或者是一个街区,再要么至少也是一栋楼这么大,想象一下砸在你家隔壁小区的感受。

铂金矿产储量小(对比地壳丰度)因此价格昂贵,整个铂族加起来如果能达到100ppm=万分之一以上,相应的价值跟钢铁基本持平

全球预估铟储量仅5万吨,其他稀有元素储量如铂族金属类似,储量最少的是Ir铱年产量仅有数吨[8]。

Deep Space Industries, Founded: January 22, 2013, HQ San Jose. On Jan. 1, 2019 DSI was acquired by Bradford Space.

Planetary Resources, Inc., formerly known as Arkyd Astronautics, is an American company that was formed on 1 January 2009,[3][1] and reorganized and renamed in 2012. It was announced in October 31, 2018, that the company's human assets were purchased by the blockchain software technology company ConsenSys, Inc. (30–50 kg) cost-reduced space telescopes for Earth observation and astronomy, laser-optical system for ground communications,[6] reducing payload bulk and mass compared to conventional RF antennas.

噱头导致很多人认为太空资源利用是骗子 忽略了原位资源利用 现在“科学家”都拿铂金忽悠投资人了

我算了一下金属星里按地球经济计算总价值最高的是镍. .. 基本和铁的总价格差不多 比例也是这样,铁的十分之一 然后公里尺度的小行星大概和全球钢铁年产能数量级相当 有几个行业可以比全球炼钢业大的?

但运回地球比钢铁容易 对,100ppm是条线 正常丰度是什么 几十ppm? 总之是在完成万吨开采能力之后了

以及满大街的钻石小行星呢?请看一看它们在多少光年之外

other target by PRes etc

已倒闭

目前,美国最领先的太空资源开采公司为“行星资源开发公司”。下图显示的并非真实场景,但正在往这个方向发展,虽然今天还没有实现对太空资源的大规模工业化开采、工业化利用,但在未来的10年、20年,这会在我们的生活中发生。

image

地壳上部元素的相对丰度,注意纵坐标是与硅的原子数量比较,横坐标是原子序数 https://en.wikipedia.org/wiki/File:Elemental_abundances.svg

价格

image How Many Ore-Bearing Asteroids, Martin Elvis, Harvard, 2013, arxiv1312.4450

铁大概七块钱一公斤,约一分钱一克,铂金两三百人民币一克吧,所以价格也就差万倍 比不上ppm级的储量差异的

铂金开采量吨级

事实上送上天的水比黄金贵,每公斤一万美元,黄金不过每公斤五万美元,空间建造每公斤100美元,每吨十万美元。人类有史以来总发射次数,总共送上天的载荷

几类典型的小行星/空间资源利用项目

所以得骗啥样的投资人才能骗说挖铂金赚钱这是个值得思考的问题. ..

不能让大众因为资源利用就是挖铂金 并且要envision新的太空

有个剧The Expanse浩渺苍穹,讲的人类分布在火星小行星月球生活的事情,还行 https://movie.douban.com/subject/25926851/

每年的June 30是联合国的小行星日,大家可以关注一下,华裔宇航员卢杰Ed Lu Brian May, Queen guitarist and astrophysicist, May earned a PhD in astrophysics from Imperial College London in 2007,[1][2] and was Chancellor of Liverpool John Moores University from 2008 to 2013. May was awarded a PhD in astrophysics from Imperial College London for work started in 1971 and completed in 2007. 梁文道:on Brian May https://mp.weixin.qq.com/s/3cz6Ai9h7om5_M_GgsAUUg Hicks, May and Reay NATURE paper 1972 https://spiral.imperial.ac.uk/bitstream/10044/1/1333/1/May-BH-2007-PhD-Thesis.pdf B612 https://asteroidday.org/

小行星上确实都是值班挖矿的

image image

如何形成,如何探测 现有的小行星资源公司干了啥

铂金,PGM https://space.stackexchange.com/questions/10048/how-is-it-known-that-asteroid-2011-uw158-has-so-much-platinum

[5] https://en.wikipedia.org/wiki/Carbonaceous_chondrite [8] Platinum-Group Metals. U.S. Geological Survey Mineral Commodity Summaries

NirViaje commented 5 years ago

我们还想听听你的心声。《自然》举办的短文写作大赛现已启动,正式面向18-25岁的全球读者征稿。我们希望你能用一篇不超过1000个单词的英文短文告诉我们,有生之年,你最想见到的科学进展是什么, 以及它为何对你如此重要。我们希望传递来自下一代的具有启发性的声音和想法。

NirViaje commented 5 years ago

机器学习与宇宙学一例

the Deep Density Displacement Model image

Test Time Comparison

For the D3M model, It takes 20s to generate 1000 simulations with a single gpu (Tesla V100-SXM2). And for FastPM, it takes 115s to generate 1000 simulations on a single Edison Haswell node, with 24 cores. The FastPM code is also fully optimized. This suggests the Deep Learning model is faster than the fast N-Body estimator.

Source

image image

NirViaje commented 4 years ago

The Chinese company want to build huge structures in space and finally create a closed-loop economy in the space

Space is huge, and the structure to collect resources from the space can be huge too.

A Chinese space company named the Exponential Deep Space

EDS with Broad team up to build rapid huge space structures with AI and robots.

The story starts from the dawn of AI

In recent years people made huge progress in the deep networks perception of artificial intelligence, the emergence of general intelligence to solve future uncertain environment is on the way. Doesn't like human, silicon won't die. Naturally, the further step is to build the AI system march into space. The new space automation system to enable heavily construction on the way different from the earth.

On the other side, most of the fictions involved artificial intelligence depicted a somehow dark side of the future, this reflects the worries of people facing the AI of the future. The thing is, we need to break the boundary of nowadays the realm, exploring and construction for the whole out space.

//This is the era //For years people build an AI system recently

Mining and building

The initial idea of Exponential Deep Space comes from the utilization of resources from out space, more specifically, the in-situ resource of a particular type of asteroids which has been known as consist of almost pure metal. Metal as the best and the easiest structure material to work with, an accessible celestial body that is naturally full of metal inevitably generates huge attractiveness, especially when it is possible to utilize the local resource there to produce further structures that scale up the production of in-situ resource utilization. Productions proportional accelerate the producing of final productions, like the story of Moore's law in microchips, this enables the exponential growth of the industry, here the name of the Exponential Deep Space come.

The best thing about the most accessible asteroids mostly called Near-Earth Asteroid is they always take the close enough orbit to the earth orbit that close to the sun enough to get lots of energy from the shining of the sun. While in the summer, it's so hot while you walking down on the beach, the same story happened in the space.

Sufficient energy

Maybe from the asteroid

Enable huge Semi-trailer

Market, build the ecology system for

Trade for resources in the space,

The market enables space civilization.

Space shopping cart.

The cycling economy in the space

Don't miss the next Amazon, maybe in the space.

Partner

Save the earth, save the climate

http://exponentialdeep.space

NirViaje commented 4 years ago

ncc 706 2020内部分享演讲A.pdf