Using the TFT model example code from the website, I get an error saying Trainer.init() got an unexpected kewyworkd argument 'grn_activation'. This is running in a fresh anaconda environment, and only neuralforecast, its dependencies and matplotlib have been installed.
Versions / Dependencies
nueralforecast version 1.7.5
pytorch lightning version 2.4.0
Reproduction script
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from neuralforecast import NeuralForecast
from neuralforecast.models import TFT
from neuralforecast.losses.pytorch import DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
What happened + What you expected to happen
Using the TFT model example code from the website, I get an error saying Trainer.init() got an unexpected kewyworkd argument 'grn_activation'. This is running in a fresh anaconda environment, and only neuralforecast, its dependencies and matplotlib have been installed.
Versions / Dependencies
nueralforecast version 1.7.5 pytorch lightning version 2.4.0
Reproduction script
import pandas as pd import matplotlib.pyplot as plt import numpy as np from neuralforecast import NeuralForecast from neuralforecast.models import TFT from neuralforecast.losses.pytorch import DistributionLoss from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
AirPassengersPanel['month']=AirPassengersPanel.ds.dt.month Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test
nf = NeuralForecast( models=[TFT(h=12, input_size=48, hidden_size=20, grn_activation='ELU', loss=DistributionLoss(distribution='StudentT', level=[80, 90]), learning_rate=0.005, stat_exog_list=['airline1'], futr_exoglist=['y[lag12]','month'], hist_exog_list=['trend'], max_steps=300, val_check_steps=10, early_stop_patience_steps=10, scaler_type='robust', windows_batch_size=None, enable_progress_bar=True), ], freq='M' ) nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12) Y_hat_df = nf.predict(futr_df=Y_test_df)
Issue Severity
High: It blocks me from completing my task.