Nixtla / nixtla

TimeGPT-1: production ready pre-trained Time Series Foundation Model for forecasting and anomaly detection. Generative pretrained transformer for time series trained on over 100B data points. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code 🚀.
https://docs.nixtla.io
Other
2.31k stars 187 forks source link

[FIX] Mintlify prefixes, readme file dirs #333

Closed elephaint closed 6 months ago

elephaint commented 6 months ago
github-actions[bot] commented 6 months ago
Experiment Results ## Experiment 1: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 12 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 12.6793 | 11.0623 | 47.8333 | 76 | | mape | 0.027 | 0.0232 | 0.0999 | 0.1425 | | mse | 213.935 | 199.132 | 2571.33 | 10604.2 | | total_time | 16.5591 | 20.5287 | 0.0088 | 0.0048 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_12_12_MS_None_1.png?raw=true) ## Experiment 2: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 58.1031 | 58.4587 | 71.25 | 115.25 | | mape | 0.1257 | 0.1267 | 0.1552 | 0.2358 | | mse | 4040.22 | 4110.79 | 5928.17 | 18859.2 | | total_time | 34.9154 | 21.9212 | 0.0057 | 0.0048 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_24_12_MS_None_1.png?raw=true) ## Experiment 3: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 142.394 | 196.363 | 269.23 | 1331.02 | | mape | 0.0203 | 0.0234 | 0.0304 | 0.1692 | | mse | 63464.7 | 123119 | 213677 | 4.68961e+06 | | total_time | 24.0071 | 20.3283 | 0.008 | 0.0067 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_24_24_H_None_1.png?raw=true) ## Experiment 4: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 168 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 522.427 | 353.528 | 398.956 | 1119.26 | | mape | 0.069 | 0.0454 | 0.0512 | 0.1583 | | mse | 966295 | 422332 | 656723 | 3.17316e+06 | | total_time | 26.457 | 20.0725 | 0.0075 | 0.007 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_168_24_H_None_1.png?raw=true) ## Experiment 5: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 336 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 478.362 | 361.033 | 602.926 | 1340.95 | | mape | 0.0622 | 0.046 | 0.0787 | 0.17 | | mse | 805039 | 441118 | 1.61572e+06 | 6.04619e+06 | | total_time | 21.2718 | 18.43 | 0.0077 | 0.0072 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_336_24_H_None_1.png?raw=true)
review-notebook-app[bot] commented 6 months ago

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

github-actions[bot] commented 6 months ago
Experiment Results ## Experiment 1: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 12 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 12.6793 | 11.0623 | 47.8333 | 76 | | mape | 0.027 | 0.0232 | 0.0999 | 0.1425 | | mse | 213.936 | 199.132 | 2571.33 | 10604.2 | | total_time | 20.2306 | 19.7868 | 0.0087 | 0.0047 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_12_12_MS_None_1.png?raw=true) ## Experiment 2: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 58.1031 | 58.4587 | 71.25 | 115.25 | | mape | 0.1257 | 0.1267 | 0.1552 | 0.2358 | | mse | 4040.22 | 4110.79 | 5928.17 | 18859.2 | | total_time | 21.3007 | 20.2678 | 0.0057 | 0.0046 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_24_12_MS_None_1.png?raw=true) ## Experiment 3: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 142.394 | 196.363 | 269.23 | 1331.02 | | mape | 0.0203 | 0.0234 | 0.0304 | 0.1692 | | mse | 63464.7 | 123119 | 213677 | 4.68961e+06 | | total_time | 21.8729 | 25.6479 | 0.0077 | 0.0067 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_24_24_H_None_1.png?raw=true) ## Experiment 4: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 168 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 522.427 | 353.528 | 398.956 | 1119.26 | | mape | 0.069 | 0.0454 | 0.0512 | 0.1583 | | mse | 966295 | 422332 | 656723 | 3.17316e+06 | | total_time | 27.827 | 26.194 | 0.0076 | 0.0069 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_168_24_H_None_1.png?raw=true) ## Experiment 5: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 336 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 478.362 | 361.033 | 602.926 | 1340.95 | | mape | 0.0622 | 0.046 | 0.0787 | 0.17 | | mse | 805039 | 441118 | 1.61572e+06 | 6.04619e+06 | | total_time | 28.3925 | 24.4125 | 0.0076 | 0.007 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_336_24_H_None_1.png?raw=true)