Nixtla / nixtla

TimeGPT-1: production ready pre-trained Time Series Foundation Model for forecasting and anomaly detection. Generative pretrained transformer for time series trained on over 100B data points. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code 🚀.
https://docs.nixtla.io
Other
2.31k stars 187 forks source link

[FEAT] What if - pricing in retail scenario #340

Closed elephaint closed 6 months ago

elephaint commented 6 months ago

Adds simple use case for evaluating different pricing scenarios when forecasting product demand for a set of products in retail.

review-notebook-app[bot] commented 6 months ago

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

github-actions[bot] commented 6 months ago
Experiment Results ## Experiment 1: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 12 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 12.6793 | 11.0623 | 47.8333 | 76 | | mape | 0.027 | 0.0232 | 0.0999 | 0.1425 | | mse | 213.936 | 199.132 | 2571.33 | 10604.2 | | total_time | 11.9196 | 15.202 | 0.009 | 0.0051 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_12_12_MS_None_1.png?raw=true) ## Experiment 2: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 58.1031 | 58.4587 | 71.25 | 115.25 | | mape | 0.1257 | 0.1267 | 0.1552 | 0.2358 | | mse | 4040.22 | 4110.79 | 5928.17 | 18859.2 | | total_time | 14.0176 | 8.5715 | 0.0058 | 0.0052 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_24_12_MS_None_1.png?raw=true) ## Experiment 3: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 142.394 | 196.363 | 269.23 | 1331.02 | | mape | 0.0203 | 0.0234 | 0.0304 | 0.1692 | | mse | 63464.8 | 123119 | 213677 | 4.68961e+06 | | total_time | 11.5947 | 7.6257 | 0.0083 | 0.0075 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_24_24_H_None_1.png?raw=true) ## Experiment 4: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 168 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 522.427 | 353.528 | 398.956 | 1119.26 | | mape | 0.069 | 0.0454 | 0.0512 | 0.1583 | | mse | 966294 | 422332 | 656723 | 3.17316e+06 | | total_time | 10.9425 | 14.1064 | 0.0076 | 0.0074 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_168_24_H_None_1.png?raw=true) ## Experiment 5: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 336 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 478.362 | 361.033 | 602.926 | 1340.95 | | mape | 0.0622 | 0.046 | 0.0787 | 0.17 | | mse | 805039 | 441118 | 1.61572e+06 | 6.04619e+06 | | total_time | 13.8168 | 17.4895 | 0.0076 | 0.0074 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_336_24_H_None_1.png?raw=true)
review-notebook-app[bot] commented 6 months ago

View / edit / reply to this conversation on ReviewNB

mergenthaler commented on 2024-05-06T21:49:22Z ----------------------------------------------------------------

Maybe we can include a brief motivation or intro section. Something like:

"What if" scenarios in time series analysis are essential across various sectors for strategic insight and decision-making. In finance, they help investors anticipate market reactions to economic events, enabling proactive risk management. Supply chains utilize these analyses to prepare for demand shifts or supplier issues, enhancing operational resilience. Energy companies forecast the impact of demand fluctuations or equipment failures to optimize production and grid management. In healthcare, scenario analysis aids in resource allocation and patient care optimization by predicting potential changes in staff or patient volumes. Retailers leverage these scenarios to adjust to shifts in consumer behavior or economic conditions, ensuring inventory and marketing strategies remain aligned with market demands. By preparing for potential future conditions, organizations enhance their strategic flexibility and resilience.


elephaint commented on 2024-05-07T11:48:10Z ----------------------------------------------------------------

Added a sentence