Nixtla / nixtla

TimeGPT-1: production ready pre-trained Time Series Foundation Model for forecasting and anomaly detection. Generative pretrained transformer for time series trained on over 100B data points. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code 🚀.
https://docs.nixtla.io
Other
2.31k stars 187 forks source link

[FEAT] Readme update #346

Closed mergenthaler closed 6 months ago

review-notebook-app[bot] commented 6 months ago

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

github-actions[bot] commented 6 months ago
Experiment Results ## Experiment 1: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 12 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 12.6793 | 11.0623 | 47.8333 | 76 | | mape | 0.027 | 0.0232 | 0.0999 | 0.1425 | | mse | 213.936 | 199.132 | 2571.33 | 10604.2 | | total_time | 1.921 | 1.9689 | 0.0085 | 0.0047 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_12_12_MS_None_1.png?raw=true) ## Experiment 2: air-passengers ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 12 | | freq | MS | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|-----------:| | mae | 58.1031 | 58.4587 | 71.25 | 115.25 | | mape | 0.1257 | 0.1267 | 0.1552 | 0.2358 | | mse | 4040.21 | 4110.79 | 5928.17 | 18859.2 | | total_time | 3.4345 | 3.1394 | 0.0058 | 0.0047 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_air-passengers_24_12_MS_None_1.png?raw=true) ## Experiment 3: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 24 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 178.293 | 196.363 | 269.23 | 1331.02 | | mape | 0.0234 | 0.0234 | 0.0304 | 0.1692 | | mse | 121588 | 123119 | 213677 | 4.68961e+06 | | total_time | 3.4141 | 4.0018 | 0.0081 | 0.007 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_24_24_H_None_1.png?raw=true) ## Experiment 4: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 168 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|------------:|-------------------------:|----------------:|---------------:| | mae | 465.532 | 353.528 | 398.956 | 1119.26 | | mape | 0.062 | 0.0454 | 0.0512 | 0.1583 | | mse | 835121 | 422332 | 656723 | 3.17316e+06 | | total_time | 5.2036 | 3.8599 | 0.0073 | 0.0069 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_168_24_H_None_1.png?raw=true) ## Experiment 5: electricity-multiple-series ### Description: | variable | experiment | |:--------------|:-------------| | h | 336 | | season_length | 24 | | freq | H | | level | None | | n_windows | 1 | ### Results: | metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive | |:-----------|--------------:|-------------------------:|----------------:|---------------:| | mae | 558.649 | 361.033 | 602.926 | 1340.95 | | mape | 0.0697 | 0.046 | 0.0787 | 0.17 | | mse | 1.22721e+06 | 441118 | 1.61572e+06 | 6.04619e+06 | | total_time | 3.7712 | 2.5717 | 0.0077 | 0.0071 | ### Plot: ![](https://github.com/Nixtla/nixtla/blob/docs-figs-model-performance//action_files/models_performance/plots/plot_electricity-multiple-series_336_24_H_None_1.png?raw=true)