OFA-Sys / OFA

Official repository of OFA (ICML 2022). Paper: OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
Apache License 2.0
2.42k stars 248 forks source link

The IPv6 network addresses of (XX.XX.XX.XX, 8214) cannot be retrieved (gai error: -2 - Name or service not known) #307

Open Zhang815 opened 1 year ago

Zhang815 commented 1 year ago

Hi, I met a problem when I follow the instruction: my steps: connect to my school's HPC build conda conda create -n OFA conda activate OFA cd/ OFA-main pip install -r requirements.txt bash train_vqa_distributed.sh

I got: The IPv6 network addresses of (XX.XX.XX.XX, 8214) cannot be retrieved (gai error: -2 - Name or service not known)

I really have no idea how to do next

yangapku commented 1 year ago

Hi, please refer to the readme (Visual Question Answering → 3. Finetuning) "Please refer to the comments in the beginning of the script and set the configs correctly according to your distribution environment.". You should first complete the distributed configs in the beginning of the script before you run.

Zhang815 commented 1 year ago

Hi, Thank you for your reply, after set distribution environment:

GPUS_PER_NODE=1 WORKER_CNT=1 export MASTER_ADDR=localhost export MASTER_PORT=8214 export RANK=0"

it appears another error: ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 255) local_rank: 0

is there any suggestion?

yangapku commented 1 year ago

Could you please provide the complete script you run with the full log?

Zhang815 commented 1 year ago

Because I am not familiar with setting distribution environment, maybe this is because the parameter is not right...

Here it is:

2022-12-03 15:04:01 - instantiator.py[line:21] - INFO: Created a temporary directory at /tmp/tmpm4mhx2jo
2022-12-03 15:04:01 - instantiator.py[line:76] - INFO: Writing /tmp/tmpm4mhx2jo/_remote_module_non_scriptable.py
2022-12-03 15:04:11 - utils.py[line:258] - INFO: distributed init (rank 0): env://
2022-12-03 15:04:11 - utils.py[line:261] - INFO: Start init
Retry: 1, with value error <class 'RuntimeError'>
/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/site-packages/torch/distributed/launch.py:188: FutureWarning: The module torch.distributed.launch is deprecated
and will be removed in future. Use torchrun.
Note that --use_env is set by default in torchrun.
If your script expects `--local_rank` argument to be set, please
change it to read from `os.environ['LOCAL_RANK']` instead. See 
https://pytorch.org/docs/stable/distributed.html#launch-utility for 
further instructions

FutureWarning,
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 255) local_rank: 0 (pid: 1154670) of binary: /scratch/yz7357/anaconda/envs/OFA/bin/python3
Traceback (most recent call last):
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/site-packages/torch/distributed/launch.py", line 195, in <module>
    main()
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/site-packages/torch/distributed/launch.py", line 191, in main
    launch(args)
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/site-packages/torch/distributed/launch.py", line 176, in launch
    run(args)
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/site-packages/torch/distributed/run.py", line 756, in run
    )(*cmd_args)
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/scratch/yz7357/anaconda/envs/OFA/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 248, in launch_agent
    failures=result.failures,
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 

> ============================================================

../../train.py FAILED
------------------------------------------------------------
Failures:
  <NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2022-12-03_15:04:12
  host      : log-1.hpc.nyu.edu
  rank      : 0 (local_rank: 0)
  exitcode  : 255 (pid: 1154670)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
yangapku commented 1 year ago

Could you provide the entire script you run as well?

Zhang815 commented 1 year ago

Hi, Sorry for replying late, and thank you for your patience. I just change the beginning of the script of the file-the train_vqa_distributed.sh and use bash command this is your code:

# Number of GPUs per GPU worker
GPUS_PER_NODE=8 
# Number of GPU workers, for single-worker training, please set to 1
WORKER_CNT=4 
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
export MASTER_ADDR=XX.XX.XX.XX
# The port for communication
export MASTER_PORT=8214
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=0 

this is my change:

# Number of GPUs per GPU worker
GPUS_PER_NODE=1
# Number of GPU workers, for single-worker training, please set to 1
WORKER_CNT=1
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
export MASTER_ADDR=localhost
# The port for communication
export MASTER_PORT=8214
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=0
Zhang815 commented 1 year ago
#!/usr/bin/env

# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training). 
# Please set the options below according to the comments. 
# For multi-gpu workers training, these options should be manually set for each worker. 
# After setting the options, please run the script on each worker.
# To use the shuffled data (if exists), please uncomment the Line 24.

# Number of GPUs per GPU worker
GPUS_PER_NODE=1
# Number of GPU workers, for single-worker training, please set to 1
WORKER_CNT=1
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
export MASTER_ADDR=localhost
# The port for communication
export MASTER_PORT=8214
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=0

data_dir=../../dataset/vqa_data
data=${data_dir}/vqa_train.tsv,${data_dir}/vqa_val.tsv
# Note: If you have shuffled the data in advance, please uncomment the line below.
# data=${data_dir}/vqa_train_1.tsv,${data_dir}/vqa_train_2.tsv,${data_dir}/vqa_train_3.tsv,${data_dir}/vqa_train_4.tsv,${data_dir}/vqa_train_5.tsv,${data_dir}/vqa_train_6.tsv,${data_dir}/vqa_train_7.tsv,${data_dir}/vqa_train_8.tsv,${data_dir}/vqa_train_9.tsv,${data_dir}/vqa_train_10.tsv,${data_dir}/vqa_val.tsv
ans2label_file=../../dataset/vqa_data/trainval_ans2label.pkl
restore_file=../../checkpoints/ofa_large.pt
selected_cols=0,5,2,3,4

log_dir=./vqa_logs
save_dir=./vqa_checkpoints
mkdir -p $log_dir $save_dir

bpe_dir=../../utils/BPE
user_dir=../../ofa_module

task=vqa_gen
arch=ofa_large
criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.1
batch_size=4
update_freq=4
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.2
decoder_drop_path_rate=0.2
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_object_length=30
max_tgt_length=30
num_bins=1000

uses_ema="--uses-ema"
store_ema="--store-ema"
ema_fp32="--ema-fp32"
ema_decay=0.9999
ema_start_update=0

# Specify the inference type in validation after each fine-tuning epoch
# As mentioned in the readme, you can choose from allcand or beamsearch evaluation, default to allcand
val_inference_type=allcand

# Specify whether to activate unconstrained VQA finetuning, which does not use a pre-defined candidate answer set
# If --unconstrained-training is acitvated, --ans2label-file will **not be used even if it is specified**
# Meanwhile, --val-inference-type must be set to **beamsearch**
# By default, we follow the constrained finetuning as we mentioned in OFA paper, the candidate answer set shall be specified by --ans2label-file
# For more details about this option, please refer to issue #123 and PR #124
unconstrained_training_flag=""
# unconstrained_training_flag="--unconstrained-training"

for total_num_updates in {40000,}; do
  echo "total_num_updates "${total_num_updates}
  for warmup_updates in {1000,}; do
    echo "warmup_updates "${warmup_updates}  
    for lr in {5e-5,}; do
      echo "lr "${lr}
      for patch_image_size in {480,}; do
        echo "patch_image_size "${patch_image_size}

        log_file=${log_dir}/${total_num_updates}"_"${warmup_updates}"_"${lr}"_"${patch_image_size}"_rank"${RANK}".log"
        save_path=${save_dir}/${total_num_updates}"_"${warmup_updates}"_"${lr}"_"${patch_image_size}
        mkdir -p $save_path

        python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --nnodes=${WORKER_CNT} --node_rank=${RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} ../../train.py \
            ${data} \
            --selected-cols=${selected_cols} \
            --bpe-dir=${bpe_dir} \
            --user-dir=${user_dir} \
            --restore-file=${restore_file} \
            --reset-optimizer --reset-dataloader --reset-meters \
            --save-dir=${save_path} \
            --task=${task} \
            --arch=${arch} \
            --criterion=${criterion} \
            --label-smoothing=${label_smoothing} \
            --batch-size=${batch_size} \
            --update-freq=${update_freq} \
            --encoder-normalize-before \
            --decoder-normalize-before \
            --share-decoder-input-output-embed \
            --share-all-embeddings \
            --layernorm-embedding \
            --patch-layernorm-embedding \
            --code-layernorm-embedding \
            --resnet-drop-path-rate=${resnet_drop_path_rate} \
            --encoder-drop-path-rate=${encoder_drop_path_rate} \
            --decoder-drop-path-rate=${decoder_drop_path_rate} \
            --dropout=${dropout} \
            --attention-dropout=${attention_dropout} \
            --weight-decay=0.01 \
            --optimizer=adam \
            --adam-betas="(0.9,0.999)" \
            --adam-eps=1e-08 \
            --clip-norm=1.0 \
            --lr-scheduler=polynomial_decay \
            --lr=${lr} \
            --total-num-update=${total_num_updates} \
            --warmup-updates=${warmup_updates} \
            --log-format=simple \
            --log-interval=10 \
            --fixed-validation-seed=7 \
            --keep-last-epochs=15 \
            --save-interval=1 --validate-interval=1 \
            --max-update=${total_num_updates} \
            --best-checkpoint-metric=vqa_score --maximize-best-checkpoint-metric \
            --max-src-length=${max_src_length} \
            --max-object-length=${max_object_length} \
            --max-tgt-length=${max_tgt_length} \
            --find-unused-parameters \
            --freeze-encoder-embedding \
            --freeze-decoder-embedding \
            ${unconstrained_training_flag} \
            --ans2label-file=${ans2label_file} \
            --valid-batch-size=20 \
            --add-type-embedding \
            --scale-attn \
            --scale-fc \
            --scale-heads \
            --disable-entangle \
            --num-bins=${num_bins} \
            --patch-image-size=${patch_image_size} \
            --prompt-type=prev_output \
            --fp16 \
            --fp16-scale-window=512 \
            --add-object \
            ${uses_ema} \
            ${store_ema} \
            ${ema_fp32} \
            --ema-decay=${ema_decay} \
            --ema-start-update=${ema_start_update} \
            --val-inference-type=${val_inference_type} \
            --num-workers=0 > ${log_file} 2>&1
      done
    done
  done
done
sandyhuang891 commented 1 year ago

Hi, I also encounter this issue, and would like to ask if you already solve it. And perhaps you can share how you solve it? Thank you!