ONEcampaign / toughest_places_index

New analysis from the ONE Campaign presents the toughest places to feed a family
MIT License
1 stars 0 forks source link

Define countries under study #30

Closed jm-rivera closed 2 years ago

jm-rivera commented 2 years ago

Which countries should the index consider?

We are framing this as the places where a combination of factors make the food security situation particularly challenging. Based on indicator selection, these countries will not be High Income Countries.

Outside HIC countries, should we narrow things in another way? Key questions to consider (for countries outside HIC):

This issue tracks answers to the above and discussion/decision if needed.

jm-rivera commented 2 years ago

31 deals with a way to store different groups.

lpicci96 commented 2 years ago

Dimension 1

1. Headline inflation

Missing - Solomon islands

2. Insufficient Food Consumption

missing overall - 52% continents - 'America': 67%, 'Asia': 48%., 'Africa': 13%, 'Europe': 95%, 'Oceania': 57% income levels - 'High income': 100%, 'Low income': 11%, 'Lower middle income': 6%, 'Upper middle income': 67%

missing low income - Eritrea, North Korea, Syria missing low middle - Belize, Comoros, Papua New Guinea

jm-rivera commented 2 years ago

2. Insufficient Food Consumption

missing overall - 52% continents - 'America': 67%, 'Asia': 48%., 'Africa': 13%, 'Europe': 95%, 'Oceania': 57% income levels - 'High income': 100%, 'Low income': 11%, 'Lower middle income': 6%, 'Upper middle income': 67%

missing low income - Eritrea, North Korea, Syria missing low middle - Belize, Comoros, Papua New Guinea

@amy-dodd Insufficient food is quite key for this. WFP is not collecting data in many UMICS. We could assume that those just mean zeros.... but that will introduce a bias as zero is quite an extreme value (when compared with the range in the data for countries with data). Such a decision wouldn't really be justified by anything but a feeling that no data means no hunger.

Let's see for the other dimensions... Maybe we don't exclude all UMICs, but instead do establish a data completeness threshold (like a country must have data for at least 5/6 indicators to be included).

lpicci96 commented 2 years ago

Dimension 2

(values are % missing)

Economist index

overall missing - 35% continents - 'Asia': 32%, 'Africa': 41% 'Europe': 19%, 'America': 28%, 'Oceania': 83% income level - 'Low income': 33%, 'Lower middle income': 39%, 'Upper middle income': 50%, 'High income': 14%

Wasting

overall missing - 10% continent - 'Asia': 4%, 'Africa': 0%, 'Europe': 44%, 'America': 3%, 'Oceania': 8% income level - 'Low income': 0%, 'Lower middle income': 0%, 'Upper middle income': 2%, 'High income': 40%

lpicci96 commented 2 years ago

Dimension 3

(values are % missing)

Fiscal Reserves minus gold

overall - 4% missing - 'Benin', 'Burkina Faso', "Cote d'Ivoire", 'Guinea-Bissau', 'Mali', 'Niger', 'Senegal', 'Togo'

Service Spending Ratio

overall - 37% continent - 'America': 38 %, 'Asia': 37%, 'Africa': 9%, 'Europe': 73%, 'Oceania': 33% income level - 'High income': 100%, 'Low income': 4%, 'Lower middle income': 6%, 'Upper middle income': 15%

low income - South Sudan lower middle income - Micronesia, Fed. Sts.', 'Pakistan', 'Palestine

jm-rivera commented 2 years ago

Extremely helpful, thank you @lpicci96!

I think we can definitely rule out HICS.

It's not looking promising for UMICsCould we get an overview of the UMICs that have data for at least 5/6 indicators?

lpicci96 commented 2 years ago

UMICs % of total variables that are null

iso_code country missing (% of all variables)
DOM Dominican Republic 0
JOR Jordan 0
GTM Guatemala 0
ECU Ecuador 0
TUR Turkey 0
BWA Botswana 0
PER Peru 0
BRA Brazil 16.66667
KAZ Kazakhstan 16.66667
ARG Argentina 16.66667
PRY Paraguay 16.66667
ROU Romania 16.66667
MDA Moldova 16.66667
ARM Armenia 16.66667
SRB Serbia 16.66667
THA Thailand 16.66667
PAN Panama 16.66667
MEX Mexico 16.66667
AZE Azerbaijan 16.66667
LBN Lebanon 16.66667
BGR Bulgaria 16.66667
CRI Costa Rica 16.66667
COL Colombia 16.66667
CHN China 16.66667
ZAF South Africa 16.66667
BLR Belarus 16.66667
FJI Fiji 16.66667
ALB Albania 33.33333
TKM Turkmenistan 33.33333
NAM Namibia 33.33333
RUS Russia 33.33333
MYS Malaysia 33.33333
LBY Libya 33.33333
MNE Montenegro 33.33333
BIH Bosnia and Herzegovina 33.33333
CUB Cuba 33.33333
MUS Mauritius 33.33333
GEO Georgia 33.33333
GUY Guyana 33.33333
GAB Gabon 33.33333
JAM Jamaica 33.33333
MDV Maldives 33.33333
MKD Macedonia 33.33333
IRQ Iraq 33.33333
GNQ Equatorial Guinea 50
SUR Suriname 50
LCA St. Lucia 50
TON Tonga 50
VCT St. Vincent and the Grenadines 66.66667
DMA Dominica 66.66667
GRD Grenada 66.66667
MHL Marshall Islands 83.33333
TUV Tuvalu 83.33333
XKX Kosovo 83.33333
jm-rivera commented 2 years ago

Thanks @lpicci96, I say we keep Fiji and above. What do you and @amy-dodd think?

amy-dodd commented 2 years ago

Thanks @jm-rivera - agree that seems the most sensible approach. I don't think we're losing any 'important' countries by eliminating the others?

amy-dodd commented 2 years ago

Eritrea, North Korea, Syria Also on indicator 2 insufficient food consumption in particular, Syria jumps out as a potentially problematic example of missing countries. Have we come to a conclusion on how we're addressing data gaps like that?

jm-rivera commented 2 years ago

All countries, minus:

A total of 78 countries