Open obriensystems opened 1 year ago
Machine Learning Crash Course https://developers.google.com/machine-learning/crash-course/representation/cleaning-data
learn gradient ascent and expand the partial derivative section - "the negative of the gradient vector points into the valley" https://developers.google.com/machine-learning/crash-course/reducing-loss/gradient-descent
deep field before deep learning https://esahubble.org/images/heic0611b/ https://simbad.u-strasbg.fr/simbad/sim-id?Ident=Hubble+Ultra+Deep+Field
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
tree classifier using area under the curve - https://dmip.webs.upv.es/papers/ICML2002presentation.pdf - the greater AUC means better positive/negative classification
XGBoost - https://xgboost.readthedocs.io/en/stable/tutorials/model.html https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/#:~:text=XGBoost%20is%20a%20machine%20learning,won%20several%20machine%20learning%20competitions.
https://codelabs.developers.google.com/vertex_notebook_executor#0
https://www.tensorflow.org/guide/tpu#distribution_strategies
TPU nodes(gRPC)/VMs(ssh) and twisted topology https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
TPU V4 up to 2048 TPU cores - https://cloud.google.com/tpu/docs/supported-tpu-configurations
JAX Autograd (automated gradient function) and XLA (Accelerated Linear Algebra - see cuBLAS) https://jax.readthedocs.io/en/latest/
https://neptune.ai/blog/retraining-model-during-deployment-continuous-training-continuous-testing
hashing or homomorphic encryption https://fastdatascience.com/sensitive-data-machine-learning-model/
TensorFlow Data Validation and Pandas https://www.tensorflow.org/tfx/data_validation/get_started
TensorFlow from Google Brain https://en.wikipedia.org/wiki/TensorFlow#TensorFlow
Batch and Streaming data processing https://beam.apache.org/
https://medium.com/mlpoint/pandas-for-machine-learning-53846bc9a98b
training with mini-batch gradient descent https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://en.wikipedia.org/wiki/Regularization_%28mathematics%29
training with L1 regularization (prevent overfitting) https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
small normalized wide dataset (reduce feature scaling for training) https://developers.google.com/machine-learning/data-prep/transform/normalization
PCA https://www.analyticsvidhya.com/blog/2022/07/principal-component-analysis-beginner-friendly/
reduce ML latency https://cloud.google.com/architecture/minimizing-predictive-serving-latency-in-machine-learning#optimizing_models_for_serving
https://www.tensorflow.org/guide/keras/serialization_and_saving
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://cloud.google.com/vertex-ai/docs/workbench/managed/schedule-managed-notebooks-run-quickstart
https://cloud.google.com/vertex-ai/docs/pipelines/run-pipeline
https://cloud.google.com/architecture/setting-up-mlops-with-composer-and-mlflow
https://cloud.google.com/tpu/docs/intro-to-tpu#when_to_use_tpus
https://www.tensorflow.org/tutorials/distribute/multi_worker_with_ctl
https://cloud.google.com/dlp/docs/transformations-reference#transformation_methods
https://cloud.google.com/blog/products/identity-security/next-onair20-security-week-session-guide
https://cloud.google.com/tensorflow-enterprise/docs/overview
https://developers.google.com/machine-learning/crash-course/representation/cleaning-data
https://developers.google.com/machine-learning/testing-debugging/metrics/interpretic
https://developers.google.com/machine-learning/crash-course/feature-crosses/video-lecture
https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview
https://cloud.google.com/automl-tables/docs/evaluate#evaluation_metrics_for_regression_models
https://developers.google.com/machine-learning/glossary#baseline
https://cloud.google.com/ai-platform/training/docs/training-at-scale
https://cloud.google.com/ai-platform/training/docs/machine-types#scale_tiers
https://cloud.google.com/vertex-ai/docs/training/distributed-training
https://cloud.google.com/ai-platform/training/docs/overview#distributed_training_structure
https://cloud.google.com/vertex-ai/docs/featurestore/overview#benefits
https://cloud.google.com/architecture/ml-on-gcp-best-practices#model-deployment-and-serving
https://cloud.google.com/memorystore/docs/redis/redis-overview
https://cloud.google.com/vertex-ai/docs/experiments/tensorboard-overview
https://cloud.google.com/vertex-ai/docs/ml-metadata/introduction
https://cloud.google.com/vertex-ai/docs/pipelines/visualize-pipeline
https://cloud.google.com/vertex-ai/docs/model-monitoring/overview
https://cloud.google.com/architecture/best-practices-for-ml-performance-cost
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/tutorials/images/transfer_learning
https://developers.google.com/machine-learning/glossary#calibration-layer
https://developers.google.com/machine-learning/testing-debugging/common/overview
https://cloud.google.com/bigquery-ml/docs/preventing-overfitting
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://cloud.google.com/architecture/implementing-deployment-and-testing-strategies-on-gke
https://docs.seldon.io/projects/seldon-core/en/latest/analytics/routers.html
https://www.tensorflow.org/tutorials/customization/custom_layers
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Lambda
https://cloud.google.com/vertex-ai/docs/ml-metadata/tracking
https://cloud.google.com/architecture/ml-on-gcp-best-practices#operationalized-training
https://cloud.google.com/architecture/ml-on-gcp-best-practices#organize-your-ml-model-artifacts