Closed ShawnXuan closed 11 months ago
TODOs: 11.06 剩余任务 | 领域 | 功能 | 基础模型 | 支持方式 | 负责人 | 状态 | 展开数量 |
---|---|---|---|---|---|---|---|
cv | classification | PVT | flowvision | Zhou | 完成 | 4 | |
cv | classification | PoolFormer | flowvision | Zhou | 完成 | 5 | |
cv | classification | ConvNeXt | flowvision | Zhou | 完成 | 18 | |
cv | classification | LeViT | flowvision | ke | 进行中(infer低) | 5 | |
cv | classification | RegionViT | flowvision | ke | 已完成 | 8 | |
cv | classification | VAN | flowvision | ke | 已完成 | 4 | |
cv | classification | MobileViT | flowvision | Zhou | 进行中(infer低) | 3 |
领域 | 功能 | 基础模型 | 支持方式 | 负责人 | 状态 | 展开数量 |
---|---|---|---|---|---|---|
cv | classification | AlexNet | flowvision | ke | 完成 | |
cv | classification | SqueezeNet | flowvision | ke | 完成 | |
cv | classification | SqueezeNet 1.1 | flowvision | ke | 完成 | |
cv | classification | VGG-11 | flowvision | ke | 完成 | |
cv | classification | VGG-11-BN | flowvision | ke | 完成 | |
cv | classification | VGG-13 | flowvision | ke | 完成 | |
cv | classification | VGG-13-BN | flowvision | ke | 完成 | |
cv | classification | VGG-16 | flowvision | ke | 完成 | |
cv | classification | VGG-16-BN | flowvision | ke | 完成 | |
cv | classification | VGG-19 | flowvision | ke | 完成 | |
cv | classification | VGG-19-BN | flowvision | ke | 完成 | |
cv | classification | GoogLeNet | flowvision | zhang | 完成 | |
cv | classification | Inception_V3 | flowvision | zhang | 完成 | |
cv | classification | ResNet-18 | flowvision | ke | 完成 | |
cv | classification | ResNet-34 | flowvision | ke | 完成 | |
cv | classification | ResNet-50 | flowvision | ke | 完成 | |
cv | classification | ResNet-101 | flowvision | ke | 完成 | |
cv | classification | ResNet-152 | flowvision | ke | 完成 | |
cv | classification | ResNeXt-50 32x4d | flowvision | ke | 完成 | |
cv | classification | ResNeXt-101 32x8d | flowvision | ke | 完成 | |
cv | classification | ResNeSt-50 | flowvision | zhang | 完成 | |
cv | classification | ResNeSt-101 | flowvision | zhang | 完成 | |
cv | classification | ResNeSt-200 | flowvision | zhang | 完成 | |
cv | classification | ResNeSt-269 | flowvision | zhang | 完成 | |
cv | classification | SE-ResNet101 | flowvision | zhang | 完成 | |
cv | classification | SE-ResNet152 | flowvision | zhang | 完成 | |
cv | classification | SE-ResNet50 | flowvision | zhang | 完成 | |
cv | classification | SE-ResNeXt101-32x4d | flowvision | zhang | 完成 | |
cv | classification | SE-ResNeXt50-32x4d | flowvision | zhang | 完成 | |
cv | classification | SENet-154 | flowvision | zhang | 完成 | |
cv | classification | DenseNet-121 | flowvision | cui | 完成 | |
cv | classification | DenseNet-161 | flowvision | cui | 完成 | |
cv | classification | DenseNet-169 | flowvision | cui | 完成 | |
cv | classification | DenseNet-201 | flowvision | cui | 完成 | |
cv | classification | ShuffleNet_V2 x0.5 | flowvision | cui | 完成 | |
cv | classification | ShuffleNet_V2 x1.0 | flowvision | cui | 完成 | |
cv | classification | ShuffleNet_V2 x1.5 | flowvision | cui | 完成 | |
cv | classification | ShuffleNet_V2 x2.0 | flowvision | cui | 完成 | |
cv | classification | MobileNet_V2 | flowvision | cui | 完成 | |
cv | classification | MobileNet_V3 small | flowvision | cui | 完成 | |
cv | classification | MobileNet_V3 large | flowvision | cui | 完成 | |
cv | classification | MNASNet x0.5 | flowvision | cui | 完成 | |
cv | classification | MNASNet x0.75 | flowvision | cui | 完成 | |
cv | classification | MNASNet x1.0 | flowvision | cui | 完成 | |
cv | classification | MNASNet x1.3 | flowvision | cui | 完成 | |
cv | classification | GhostNet | flowvision | ke | 完成 | |
cv | classification | EfficientNet | flowvision | ke | 完成 | 8 |
cv | classification | RegNet | flowvision | ke | 完成 | 15 |
cv | classification | ReXNet | flowvision | ke | 完成 | 10 |
cv | classification | ViT | flowvision | ke | 完成 | 31 |
cv | classification | DeiT | flowvision | ke | 完成 | 22 |
cv | classification | PVT | flowvision | ke | 完成 | 4 |
cv | classification | CrossFormer-T | flowvision | zhang | 完成 | |
cv | classification | CrossFormer-S | flowvision | zhang | 完成 | |
cv | classification | CrossFormer-B | flowvision | zhang | 完成 | |
cv | classification | CrossFormer-L | flowvision | zhang | 完成 | |
cv | classification | PoolFormer-S12 | flowvision | zhang | 进行中 | |
cv | classification | PoolFormer-S24 | flowvision | zhang | 进行中 | |
cv | classification | PoolFormer-S36 | flowvision | zhang | 进行中 | |
cv | classification | PoolFormer-M36 | flowvision | zhang | 进行中 | |
cv | classification | PoolFormer-M48 | flowvision | zhang | 进行中 | |
cv | classification | Mlp_Mixer | flowvision | ke | 完成 | 10 |
cv | classification | gMLP | flowvision | ke | 完成 | 2 |
cv | classification | ConvMixer | flowvision | ke | 完成 | 2 |
cv | classification | ConvNeXt | flowvision | ke | 进行中(infer低) | 18 |
cv | classification | LeViT | flowvision | ke | 进行中(infer低) | 5 |
cv | classification | RegionViT | flowvision | ke | 完成 | 8 |
cv | classification | VAN | flowvision | ke | 完成 | 4 |
cv | classification | MobileViT | flowvision | li | 进行中(infer低) | 3 |
cv | classification | CaiT | flowvision | li | 完成 1 | 6 |
cv | classification | DLA | flowvision | li | 完成 1 | 10 |
cv | classification | GENet | flowvision | li | 完成 1 | 3 |
cv | classification | HRNet | flowvision | li | 完成 1 | 9 |
cv | classification | FAN | flowvision | li | 完成 1 | 12 |
cv | Semantic Segmentation | fcn_resnet101_coco | flowvision | zhou | 完成 | |
cv | Semantic Segmentation | fcn_resnet50_coco | flowvision | zhou | 完成 | |
cv | Semantic Segmentation | deeplabv3_mobilenet_v3_large_coco | flowvision | zhou | 完成 | |
cv | Semantic Segmentation | deeplabv3_resnet101_coco | flowvision | zhou | 完成 | |
cv | Semantic Segmentation | deeplabv3_resnet50_coco | flowvision | zhou | 完成 | |
cv | Semantic Segmentation | lraspp_mobilenet_v3_large_coco | flowvision | zhou | 完成 | |
cv | Object Detection | fasterrcnn_mobilenet_v3_large_320_fpn | flowvision | zhou | 完成 | |
cv | Object Detection | fasterrcnn_mobilenet_v3_large_fpn | flowvision | zhou | 完成 | |
cv | Object Detection | fasterrcnn_resnet50_fpn | flowvision | zhou | 完成 | |
cv | Object Detection | maskrcnn_resnet50_fpn | flowvision | zhou | 完成 | |
cv | Object Detection | retinanet_resnet50_fpn | flowvision | zhou | 完成 | |
cv | Object Detection | ssd300_vgg16 | flowvision | zhou | 完成 | |
cv | Object Detection | ssdlite320_mobilenet_v3_large | flowvision | zhou | 完成 | |
cv | Object Detection | fcos_resnet50_fpn | flowvision | zhou | 完成 | |
cv | Neural Style Transfer | style_transfer.fast_neural_style | flowvision | zhou | 完成 | |
cv | Face Recognition | iresnet50 | flowvision | zhou | 完成 | |
cv | Face Recognition | iresnet101 | flowvision | zhou | 完成 | |
cv | VisionTransformer | libai | li | 完成 | ||
nlp | SwinTransformer | libai | li | 完成 | ||
nlp | SwinTransformerV2 | libai | li | 完成 | ||
nlp | ResMLP | libai | li | 完成 | ||
nlp | BERT | libai | li | 完成 | ||
nlp | RoBERTa | libai | li | 完成 | ||
nlp | T5 | libai | li | 完成 | ||
nlp | GPT-2 | libai | li | 完成 | ||
nlp | text_classfication | Transformer | CoModels | maolin | 完成 | |
nlp | odd_numbers | Transformer | CoModels | maolin | 完成 | |
science | Equation inversion-Lorenz system | PINNs | CoModels | zhang | ||
science | Fluid simulation-ldc | PINNs | CoModels | zhang |
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
ResNet-50
cd CoModels/cv/classification
bash resnet50/train.sh
Throughput 406.443 (406.443) Loss 1.0186 (1.0186) Acc@1 76.074 (76.074) Acc@5 93.164 (93.164)
INFO * Acc@1 76.074 Acc@5 93.164 INFO Accuracy of the network on the 49 test images: 76.1%
INFO Max accuracy: 78.12% ```
cd CoModels/cv/classification
bash resnet50/infer.sh
INFO * Acc@1 75.810 Acc@5 92.880
INFO Accuracy of the network on the 391 test images: 75.8%
INFO throughput averaged with 30 times
INFO batch_size 128 throughput 1499.7032331822686
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
ResNet-18
cd CoModels/cv/classification
bash resnet18/train.sh
INFO Test: [0/196] Throughput 345.635 (345.635) Loss 1.3194 (1.3194) Acc@1 71.875 (71.875) Acc@5 87.109 (87.109)
INFO Test: [50/196] Throughput 1548.752 (1449.800) Loss 1.4135 (1.3025) Acc@1 68.750 (70.113) Acc@5 89.453 (89.331)
INFO Test: [100/196] Throughput 1471.438 (1460.432) Loss 1.3624 (1.3093) Acc@1 69.922 (70.038) Acc@5 86.719 (89.101)
Acc@1 69.922 (69.868) Acc@5 91.016 (89.132)
cd CoModels/cv/classification
bash resnet18/infer.sh
INFO * Acc@1 69.533 Acc@5 89.042
INFO Accuracy of the network on the 391 test images: 69.5%
INFO throughput averaged with 30 times
INFO batch_size 128 throughput 4513.727823187475
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
ResNet-34
099d659
cd CoModels/cv/classification/resnet34
bash train.sh
INFO * Acc@1 64.695 Acc@5 86.494
INFO Accuracy of the network on the 391 test images: 64.7%
INFO Max accuracy: 64.69%
cd CoModels/cv/classification/resnet34
bash infer.sh
INFO * Acc@1 73.203 Acc@5 91.354
INFO Accuracy of the network on the 1563 test images: 73.2%
ResNet-101
088632c
cd CoModels/cv/classification/resnet101
bash train.sh
INFO * Acc@1 70.651 Acc@5 90.429
INFO Accuracy of the network on the 391 test images: 70.7%
INFO Max accuracy: 71.07%
cd CoModels/cv/classification/resnet101
bash infer.sh
INFO * Acc@1 77.259 Acc@5 93.542
INFO Accuracy of the network on the 1563 test images: 77.3%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 845.537374493343
ResNet-152
d0fa30d
cd CoModels/cv/classification/resnet152
bash train.sh
cd CoModels/cv/classification/resnet152
bash infer.sh
INFO * Acc@1 78.246 Acc@5 93.966
INFO Accuracy of the network on the 1563 test images: 78.2%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 283.2536238449759
AlexNet
ca2e092
cd CoModels/cv/classification/alexnet
bash train.sh
cd CoModels/cv/classification/alexnet
bash infer.sh
INFO * Acc@1 56.159 Acc@5 78.891
INFO Accuracy of the network on the 1563 test images: 56.2%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 6894.08522470448
VGG-11
e39b1d0
cd CoModels/cv/classification/vgg11
bash train.sh
cd CoModels/cv/classification/vgg11
bash infer.sh
INFO * Acc@1 68.717 Acc@5 88.564
INFO Accuracy of the network on the 391 test images: 68.7%
INFO throughput averaged with 30 times
INFO batch_size 128 throughput 1423.000632773497
VGG-11-BN
7dc55de
cd CoModels/cv/classification/vgg11_bn
bash train.sh
cd CoModels/cv/classification/vgg11_bn
bash infer.sh
INFO * Acc@1 70.265 Acc@5 89.710
INFO Accuracy of the network on the 1563 test images: 70.3%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 618.8654709457523
VGG-13
836450b
cd CoModels/cv/classification/vgg13
bash train.sh
cd CoModels/cv/classification/vgg13
bash infer.sh
INFO * Acc@1 69.604 Acc@5 89.233
INFO Accuracy of the network on the 1563 test images: 69.6%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 441.14096897959365
VGG-13-BN
6e925c1
cd CoModels/cv/classification/vgg13_bn
bash train.sh
cd CoModels/cv/classification/vgg13_bn
bash infer.sh
INFO * Acc@1 71.397 Acc@5 90.317
INFO Accuracy of the network on the 1563 test images: 71.4%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 396.0371458561849
VGG-16
39802ca
cd CoModels/cv/classification/vgg16
bash train.sh
cd CoModels/cv/classification/vgg16
bash infer.sh
INFO * Acc@1 71.385 Acc@5 90.325
INFO Accuracy of the network on the 1563 test images: 71.4%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 352.50112210291934
VGG-19
44a6cd2
cd CoModels/cv/classification/vgg19
bash train.sh
cd CoModels/cv/classification/vgg19
bash infer.sh
INFO * Acc@1 72.238 Acc@5 90.764
INFO Accuracy of the network on the 1563 test images: 72.2%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 293.97019728664696
1、机器:of27@192.168.40.27。
2、数据集:/data/dataset/bert_data
。
3、oneflow version commit:[57f632741ab0e9ee81c5e2d49098e292dcd7e705] 。
4、libai
1、机器:a100@60.171.194.72。
2、数据集:/data/dataset/bert_data
。
3、oneflow version commit:[24ed4d6] 。
4、libai
1、机器:a100@60.171.194.72。
2、数据集:/data/dataset/gpt2_data
。
3、oneflow version commit:[630bb39] 。
4、libai
1、机器:a100@60.171.194.72。
2、数据集:/data/dataset/robert_data
。
3、oneflow version commit:[e4db023] 。
4、libai
Densenet_201
cd CoModels/cv/classification/densenet201
bash train.sh
cd CoModels/cv/classification/densenet201
bash infer.sh
wandb: Run summary:
wandb: val_acc1 77.30496
wandb: val_acc5 93.48808
wandb: val_loss 0.91155
Densenet_161
cd CoModels/cv/classification/densenet161
bash train.sh
cd CoModels/cv/classification/densenet161
bash infer.sh
wandb: Run summary:
wandb: val_acc1 77.37347
wandb: val_acc5 93.65128
wandb: val_loss 0.93307
Densenet_121
cd CoModels/cv/classification/densenet121
bash train.sh
cd CoModels/cv/classification/densenet121
bash infer.sh
wandb: Run summary:
wandb: val_acc1 74.74815
wandb: val_acc5 92.17239
wandb: val_loss 1.01171
Densenet_169
cd CoModels/cv/classification/densenet169
bash train.sh
cd CoModels/cv/classification/densenet169
bash infer.sh
wandb: Run summary:
wandb: val_acc1 75.88854
wandb: val_acc5 93.02264
wandb: val_loss 0.98375
Vgg16_bn
2220f40
cd CoModels/cv/classification/vgg16_bn
bash train.sh
cd CoModels/cv/classification/vgg16_bn
bash infer.sh
INFO * Acc@1 73.064 Acc@5 91.377
INFO Accuracy of the network on the 1563 test images: 73.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 527.2008533607626
Vgg19_bn
5b02b25
cd CoModels/cv/classification/vgg19_bn
bash train.sh
cd CoModels/cv/classification/vgg19_bn
bash infer.sh
INFO * Acc@1 74.025 Acc@5 91.731
INFO Accuracy of the network on the 1563 test images: 74.0%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 297.1238754357942
1、机器:27@192.168.1.27。
2、数据集:imagenet。
3、oneflow version commit: [04c8bcc]。
4、libai
Inception_V3
78444e8
cd CoModels/cv/classification/inception_v3
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: cifar100
DATA_PATH: /data/dataset/cifar100/extract
IMG_SIZE: 224
NUM_WORKERS: 4
NUM_CLASSES: 100
TRAIN:
START_EPOCH: 0
EPOCHS: 50
WARMUP_EPOCHS: 1
WEIGHT_DECAY: 1e-4
BASE_LR: 0.001
WARMUP_LR: 5e-7
GoogLeNet
adc378b
cd CoModels/cv/classification/googlenet
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: cifar100
DATA_PATH: /data/dataset/cifar100/extract
IMG_SIZE: 224
NUM_WORKERS: 4
NUM_CLASSES: 100
TRAIN:
START_EPOCH: 0
EPOCHS: 50
WARMUP_EPOCHS: 1
WEIGHT_DECAY: 1e-4
BASE_LR: 0.001
WARMUP_LR: 5e-7
ResNeSt-50
d52aea4
cd CoModels/cv/classification/resnest50
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: imagenet
DATA_PATH: /data/dataset/ImageNet/extract
IMG_SIZE: 224
NUM_WORKERS: 8
TRAIN:
START_EPOCH: 0
EPOCHS: 20
WARMUP_EPOCHS: 0
WEIGHT_DECAY: 1e-4
BASE_LR: 1e-3
WARMUP_LR: 5e-7
SqueezeNet
8b50f56
cd CoModels/cv/classification/squeezenet1_0
bash train.sh
cd CoModels/cv/classification/squeezenet1_0
bash infer.sh
INFO * Acc@1 57.836 Acc@5 80.309
INFO Accuracy of the network on the 1563 test images: 57.8%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 3930.674481421572
ResNeXt-50 32x4d
acf423c
cd CoModels/cv/classification/resnext50_32x4d
bash train.sh
cd CoModels/cv/classification/resnext50_32x4d
bash infer.sh
INFO * Acc@1 77.490 Acc@5 93.575
INFO Accuracy of the network on the 1563 test images: 77.5%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 353.72756770888606
SqueezeNet 1.1
7c5e713
cd CoModels/cv/classification/squeezenet1_1
bash train.sh
cd CoModels/cv/classification/squeezenet1_1
bash infer.sh
INFO * Acc@1 57.878 Acc@5 80.412
INFO Accuracy of the network on the 1563 test images: 57.9%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 6722.886752853844
ResNeXt-101 32x8d
3bc5c2f
cd CoModels/cv/classification/resnext101_32x8d
bash train.sh
cd CoModels/cv/classification/resnext101_32x8d
bash infer.sh
INFO * Acc@1 79.060 Acc@5 94.437
INFO Accuracy of the network on the 1563 test images: 79.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 209.79367594690888
ResNeSt-200
04fc5c2
cd CoModels/cv/classification/resnest200
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: imagenet
DATA_PATH: /data/dataset/ImageNet/extract
IMG_SIZE: 320
NUM_WORKERS: 8
TRAIN:
START_EPOCH: 0
EPOCHS: 2
WARMUP_EPOCHS: 0
WEIGHT_DECAY: 1e-4
BASE_LR: 1e-3
WARMUP_LR: 5e-7
ResNeSt-269
4d5b373
cd CoModels/cv/classification/resnest269
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: imagenet
DATA_PATH: /data/dataset/ImageNet/extract
IMG_SIZE: 416
NUM_WORKERS: 8
TRAIN:
START_EPOCH: 0
EPOCHS: 2
WARMUP_EPOCHS: 0
WEIGHT_DECAY: 1e-4
BASE_LR: 1e-3
WARMUP_LR: 5e-7
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
shufflenet_v2_x1_0
cd CoModels/cv/classification/ShuffleNet_V2x1.0
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: imagenet
DATA_PATH: /data/dataset/ImageNet/extract
IMG_SIZE: 416
NUM_WORKERS: 8
TRAIN:
START_EPOCH: 0
EPOCHS: 2
WARMUP_EPOCHS: 0
WEIGHT_DECAY: 1e-4
BASE_LR: 1e-3
WARMUP_LR: 5e-7
shufflenet_v2_x0_5
cd CoModels/cv/classification/ShuffleNet_V2x0.5
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: imagenet
DATA_PATH: /data/dataset/ImageNet/extract
IMG_SIZE: 416
NUM_WORKERS: 8
TRAIN:
START_EPOCH: 0
EPOCHS: 2
WARMUP_EPOCHS: 0
WEIGHT_DECAY: 1e-4
BASE_LR: 1e-3
WARMUP_LR: 5e-7
1、机器:A100@192.168.40.21,显存40GB。
2、数据集:MSCOCO 2017数据集,80个类别。数据集位置:/data/dataset/coco
。
3、oneflow version commit:dea3f43。
4、flowvision version:0.2.1。
SE-ResNet101
542c507
cd CoModels/cv/classification/se_resnet101
bash train.sh
DATA:
BATCH_SIZE: 32
DATASET: imagenet
DATA_PATH: /data/dataset/ImageNet/extract
IMG_SIZE: 256
NUM_WORKERS: 8
MODEL:
PRETRAINED: True
RESUME: ""
LABEL_SMOOTHING: 0.1
TRAIN:
START_EPOCH: 0
EPOCHS: 20
WARMUP_EPOCHS: 0
WEIGHT_DECAY: 1e-4
BASE_LR: 1e-3
WARMUP_LR: 5e-7
LR_SCHEDULER:
NAME: step
DECAY_EPOCHS: 1
DECAY_RATE: 0.8