Open-Systems-Pharmacology / OSP-based-publications-and-content

Publications of all kind based on the Open Systems Pharmacology Suite
15 stars 2 forks source link

Use of Real-World Data and Physiologically-Based Pharmacokinetic Modeling to Characterize Enoxaparin Disposition in Children with Obesity #355

Open JanSchlender opened 2 years ago

JanSchlender commented 2 years ago

Clin Pharmacol Ther. 2022 Apr 22. Jacqueline G Gerhart, Fernando O Carreño, Matthew Shane Loop, Craig R Lee, Andrea N Edginton, Jaydeep Sinha, Karan R Kumar, Carl M Kirkpatrick, Christoph P Hornik, Daniel Gonzalez https://pubmed.ncbi.nlm.nih.gov/35451072/

Abstract Dosing guidance for children with obesity is often unknown despite the fact that nearly 20% of United States children are classified as obese. Enoxaparin, a commonly prescribed low-molecular-weight heparin, is dosed based on body weight irrespective of obesity status to achieve maximum concentration within a narrow therapeutic or prophylactic target range. However, whether children with and without obesity experience equivalent enoxaparin exposure remains unclear. To address this clinical question, 2,825 anti-Xa surrogate concentrations were collected from the electronic health records of 596 children, including those with obesity. Using linear mixed-effects regression models, we observed that 4-hour anti-Xa concentrations were statistically significantly different in children with and without obesity, even for children with the same absolute dose (p=0.004). To further mechanistically explore obesity-associated differences in anti-Xa concentration, a pediatric physiologically-based pharmacokinetic (PBPK) model was developed in adults, and then scaled to children with and without obesity. This PBPK model incorporated binding of enoxaparin to antithrombin (AT-III) to form anti-Xa and elimination via heparinase-mediated metabolism and glomerular filtration. Following scaling, the PBPK model predicted real-world pediatric concentrations well, with an average fold error (standard deviation of the fold error) of 0.82 (0.23) and 0.87 (0.26) in children with and without obesity, respectively. PBPK model simulations revealed that children with obesity have at most 20% higher 4-hour anti-Xa concentrations under recommended, total body weight-based dosing compared to children without obesity owing to reduced weight-normalized clearance. Enoxaparin exposure was better matched across age groups and obesity status using fat-free mass weight-based dosing.

Keywords: enoxaparin; obesity; pediatrics; pharmacokinetics; physiologically-based pharmacokinetic modeling.

This article is protected by copyright. All rights reserved.