OpenGVLab / InternImage

[CVPR 2023 Highlight] InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
https://arxiv.org/abs/2211.05778
MIT License
2.55k stars 237 forks source link

detection 我是用自己数据训练 就是那个官方balloon数据,典型小样本,效果太差 #282

Open BoFan-tunning opened 10 months ago

BoFan-tunning commented 10 months ago

optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None)

learning policy

lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=20)

BoFan-tunning commented 10 months ago

2024-02-02 17:14:29,451 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.031 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.095 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.039 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.104 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.104 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.104 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.144

2024-02-02 17:14:29,451 - mmdet - INFO - +----------+-------+ | category | AP | +----------+-------+ | balloon | 0.031 | +----------+-------+ 2024-02-02 17:14:29,497 - mmdet - INFO - The previous best checkpoint F:\OpenGVLab\InternImage\detection\work_dirs\mask_rcnn_internimage_t_fpn_1x_coco\best_bbox_mAP_epoch_17.pth was removed 2024-02-02 17:14:31,301 - mmdet - INFO - Now best checkpoint is saved as best_bbox_mAP_epoch_20.pth. 2024-02-02 17:14:31,301 - mmdet - INFO - Best bbox_mAP is 0.0313 at 20 epoch. 2024-02-02 17:14:31,301 - mmdet - INFO - Exp name: mask_rcnn_internimage_t_fpn_1x_coco.py 2024-02-02 17:14:31,301 - mmdet - INFO - Epoch(val) [20][13] bbox_mAP: 0.0313, bbox_mAP_50: 0.0958, bbox_mAP_75: 0.0033, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0393, bbox_mAP_copypaste: 0.0313 0.0958 0.0033 0.0000 0.0000 0.0393, segm_mAP: 0.0306, segm_mAP_50: 0.0947, segm_mAP_75: 0.0000, segm_mAP_s: 0.0000, segm_mAP_m: 0.0000, segm_mAP_l: 0.0393, segm_mAP_copypaste: 0.0306 0.0947 0.0000 0.0000 0.0000 0.0393

BoFan-tunning commented 10 months ago

20 训练乱好惨,怎么提供效果,只能加样本或者是训练轮次吗?感觉上这模型对数据部明个

Emperor124 commented 4 months ago

请问你怎么修改的数据类别为自己的,我在项目里没找到修改的地方,非常感谢你的回复

ll553664391 commented 2 months ago

请问你怎么修改的数据类别为自己的,我在项目里没找到修改的地方,非常感谢你的回复