Closed 00drdelius closed 1 year ago
报错格式改一下:
Hi. 你分析得有道理,应该是因为inplace_grad()
。
lomo_lora_trainer.py
里实现了使用 DeepSpeed 训练时的 LOMO。如果不想使用DeepSpeed,可以把inplace_grad()
改成参考这里的实现:
https://github.com/OpenLMLab/LOMO/blob/ee7d431344569bc69ff7283b70141b5c6d66c901/src/lomo.py#L66
期待你的进一步反馈。
期待大佬更新
Hi. 你分析得有道理,应该是因为
inplace_grad()
。lomo_lora_trainer.py
里实现了使用 DeepSpeed 训练时的 LOMO。如果不想使用DeepSpeed,可以把inplace_grad()
改成参考这里的实现:https://github.com/OpenLMLab/LOMO/blob/ee7d431344569bc69ff7283b70141b5c6d66c901/src/lomo.py#L66
期待你的进一步反馈。
已将注册个钩子函数根据fuse_update修改如下: 但仍然报错,错误相同。😢
可能是lora的问题,同样的代码不加lomo能跑通吗?
可能是lora的问题,同样的代码不加lomo能跑通吗?
我发现当AutoModelForCausalLM.from_pretrained内传入load_in_4bit=True后 所有层会变成这样👇:
而如果是load_in_4bit=False👇:
上述的报错是出现在proj_q与hidden_size形状不对齐导致的错误, 我又测试了使用transformer内置的Trainer,同样例子的矩阵形状也是4096X4096 -> 1x8388608 也不能跑通。。。 我得再看看问题在哪
矩阵维度的问题解决了 是源码版本问题: 重新从github上下载transfomers peft accelerate库就行了 太搞心态了 😅😅😅
Hi! 使用LOMO+LoRA时可以一切正常地运行。 但是!
我想将LOMO与QLoRA结合在一起, 于是: 我在您lomo_lora相关的源码中的模型代码加入了量化的功能: train_lomo_lora.py: 并且在LoRA config后添加了:
因为deepspeed暂时不支持量化,我注释并修改了所有跟deepspeed相关的配置: train_lomo_lora.py:
lomo_lora_trainer.py:
之后修改run.sh: python src/train_lomo_lora.py config/args_lomo_lora.yaml
运行几次添加了需要的库后却报错如下:
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /root/model/utils/CustomLOMO/src/train_lomo_lora.py:181 in <module> │ │ │ │ 178 │ │ 179 │ │ 180 if __name__ == "__main__": │ │ ❱ 181 │ train() │ │ 182 │ │ │ │ /root/model/utils/CustomLOMO/src/train_lomo_lora.py:177 in train │ │ │ │ 174 │ │ compute_metrics=compute_metrics, │ │ 175 │ │ optimizers={'model_parameters': peft_params}, │ │ 176 │ ) │ │ ❱ 177 │ trainer.train() │ │ 178 │ │ 179 │ │ 180 if __name__ == "__main__": │ │ │ │ /root/model/utils/CustomLOMO/src/lomo_lora_trainer.py:197 in train │ │ │ │ 194 │ │ │ with tqdm.tqdm(self.train_dataloader, disable=not self.allow_print) as tqb: │ │ 195 │ │ │ │ for step, batch in enumerate(tqb, start=1): │ │ 196 │ │ │ │ │ self.model.train() │ │ ❱ 197 │ │ │ │ │ outs = self.model( │ │ 198 │ │ │ │ │ │ input_ids=batch['input_ids'].cuda(), │ │ 199 │ │ │ │ │ │ attention_mask=batch['attention_mask'].cuda(), │ │ 200 │ │ │ │ │ ) │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/nn/modules/module.py:1501 in │ │ _call_impl │ │ │ │ 1498 │ │ if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks │ │ 1499 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hooks │ │ 1500 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │ │ ❱ 1501 │ │ │ return forward_call(*args, **kwargs) │ │ 1502 │ │ # Do not call functions when jit is used │ │ 1503 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │ │ 1504 │ │ backward_pre_hooks = [] │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/peft/peft_model.py:678 in forward │ │ │ │ 675 │ ): │ │ 676 │ │ peft_config = self.active_peft_config │ │ 677 │ │ if not isinstance(peft_config, PromptLearningConfig): │ │ ❱ 678 │ │ │ return self.base_model( │ │ 679 │ │ │ │ input_ids=input_ids, │ │ 680 │ │ │ │ attention_mask=attention_mask, │ │ 681 │ │ │ │ inputs_embeds=inputs_embeds, │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/nn/modules/module.py:1501 in │ │ _call_impl │ │ │ │ 1498 │ │ if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks │ │ 1499 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hooks │ │ 1500 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │ │ ❱ 1501 │ │ │ return forward_call(*args, **kwargs) │ │ 1502 │ │ # Do not call functions when jit is used │ │ 1503 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │ │ 1504 │ │ backward_pre_hooks = [] │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/accelerate/hooks.py:165 in new_forward │ │ │ │ 162 │ │ │ with torch.no_grad(): │ │ 163 │ │ │ │ output = old_forward(*args, **kwargs) │ │ 164 │ │ else: │ │ ❱ 165 │ │ │ output = old_forward(*args, **kwargs) │ │ 166 │ │ return module._hf_hook.post_forward(module, output) │ │ 167 │ │ │ 168 │ module.forward = new_forward │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/transformers/models/llama/modeling_llam │ │ a.py:688 in forward │ │ │ │ 685 │ │ return_dict = return_dict if return_dict is not None else self.config.use_return │ │ 686 │ │ │ │ 687 │ │ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) │ │ ❱ 688 │ │ outputs = self.model( │ │ 689 │ │ │ input_ids=input_ids, │ │ 690 │ │ │ attention_mask=attention_mask, │ │ 691 │ │ │ position_ids=position_ids, │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/nn/modules/module.py:1501 in │ │ _call_impl │ │ │ │ 1498 │ │ if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks │ │ 1499 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hooks │ │ 1500 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │ │ ❱ 1501 │ │ │ return forward_call(*args, **kwargs) │ │ 1502 │ │ # Do not call functions when jit is used │ │ 1503 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │ │ 1504 │ │ backward_pre_hooks = [] │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/accelerate/hooks.py:165 in new_forward │ │ │ │ 162 │ │ │ with torch.no_grad(): │ │ 163 │ │ │ │ output = old_forward(*args, **kwargs) │ │ 164 │ │ else: │ │ ❱ 165 │ │ │ output = old_forward(*args, **kwargs) │ │ 166 │ │ return module._hf_hook.post_forward(module, output) │ │ 167 │ │ │ 168 │ module.forward = new_forward │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/transformers/models/llama/modeling_llam │ │ a.py:570 in forward │ │ │ │ 567 │ │ │ │ │ │ │ 568 │ │ │ │ │ return custom_forward │ │ 569 │ │ │ │ │ │ ❱ 570 │ │ │ │ layer_outputs = torch.utils.checkpoint.checkpoint( │ │ 571 │ │ │ │ │ create_custom_forward(decoder_layer), │ │ 572 │ │ │ │ │ hidden_states, │ │ 573 │ │ │ │ │ attention_mask, │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/utils/checkpoint.py:249 in │ │ checkpoint │ │ │ │ 246 │ │ raise ValueError("Unexpected keyword arguments: " + ",".join(arg for arg in kwar │ │ 247 │ │ │ 248 │ if use_reentrant: │ │ ❱ 249 │ │ return CheckpointFunction.apply(function, preserve, *args) │ │ 250 │ else: │ │ 251 │ │ return _checkpoint_without_reentrant( │ │ 252 │ │ │ function, │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/autograd/function.py:506 in apply │ │ │ │ 503 │ │ if not torch._C._are_functorch_transforms_active(): │ │ 504 │ │ │ # See NOTE: [functorch vjp and autograd interaction] │ │ 505 │ │ │ args = _functorch.utils.unwrap_dead_wrappers(args) │ │ ❱ 506 │ │ │ return super().apply(*args, **kwargs) # type: ignore[misc] │ │ 507 │ │ │ │ 508 │ │ if cls.setup_context == _SingleLevelFunction.setup_context: │ │ 509 │ │ │ raise RuntimeError( │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/utils/checkpoint.py:107 in │ │ forward │ │ │ │ 104 │ │ ctx.save_for_backward(*tensor_inputs) │ │ 105 │ │ │ │ 106 │ │ with torch.no_grad(): │ │ ❱ 107 │ │ │ outputs = run_function(*args) │ │ 108 │ │ return outputs │ │ 109 │ │ │ 110 │ @staticmethod │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/transformers/models/llama/modeling_llam │ │ a.py:566 in custom_forward │ │ │ │ 563 │ │ │ │ def create_custom_forward(module): │ │ 564 │ │ │ │ │ def custom_forward(*inputs): │ │ 565 │ │ │ │ │ │ # None for past_key_value │ │ ❱ 566 │ │ │ │ │ │ return module(*inputs, output_attentions, None) │ │ 567 │ │ │ │ │ │ │ 568 │ │ │ │ │ return custom_forward │ │ 569 │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/nn/modules/module.py:1501 in │ │ _call_impl │ │ │ │ 1498 │ │ if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks │ │ 1499 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hooks │ │ 1500 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │ │ ❱ 1501 │ │ │ return forward_call(*args, **kwargs) │ │ 1502 │ │ # Do not call functions when jit is used │ │ 1503 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │ │ 1504 │ │ backward_pre_hooks = [] │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/accelerate/hooks.py:165 in new_forward │ │ │ │ 162 │ │ │ with torch.no_grad(): │ │ 163 │ │ │ │ output = old_forward(*args, **kwargs) │ │ 164 │ │ else: │ │ ❱ 165 │ │ │ output = old_forward(*args, **kwargs) │ │ 166 │ │ return module._hf_hook.post_forward(module, output) │ │ 167 │ │ │ 168 │ module.forward = new_forward │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/transformers/models/llama/modeling_llam │ │ a.py:292 in forward │ │ │ │ 289 │ │ hidden_states = self.input_layernorm(hidden_states) │ │ 290 │ │ │ │ 291 │ │ # Self Attention │ │ ❱ 292 │ │ hidden_states, self_attn_weights, present_key_value = self.self_attn( │ │ 293 │ │ │ hidden_states=hidden_states, │ │ 294 │ │ │ attention_mask=attention_mask, │ │ 295 │ │ │ position_ids=position_ids, │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/nn/modules/module.py:1501 in │ │ _call_impl │ │ │ │ 1498 │ │ if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks │ │ 1499 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hooks │ │ 1500 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │ │ ❱ 1501 │ │ │ return forward_call(*args, **kwargs) │ │ 1502 │ │ # Do not call functions when jit is used │ │ 1503 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │ │ 1504 │ │ backward_pre_hooks = [] │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/accelerate/hooks.py:165 in new_forward │ │ │ │ 162 │ │ │ with torch.no_grad(): │ │ 163 │ │ │ │ output = old_forward(*args, **kwargs) │ │ 164 │ │ else: │ │ ❱ 165 │ │ │ output = old_forward(*args, **kwargs) │ │ 166 │ │ return module._hf_hook.post_forward(module, output) │ │ 167 │ │ │ 168 │ module.forward = new_forward │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/transformers/models/llama/modeling_llam │ │ a.py:194 in forward │ │ │ │ 191 │ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: │ │ 192 │ │ bsz, q_len, _ = hidden_states.size() │ │ 193 │ │ │ │ ❱ 194 │ │ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self. │ │ 195 │ │ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.he │ │ 196 │ │ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self. │ │ 197 │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/torch/nn/modules/module.py:1501 in │ │ _call_impl │ │ │ │ 1498 │ │ if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks │ │ 1499 │ │ │ │ or _global_backward_pre_hooks or _global_backward_hooks │ │ 1500 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │ │ ❱ 1501 │ │ │ return forward_call(*args, **kwargs) │ │ 1502 │ │ # Do not call functions when jit is used │ │ 1503 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │ │ 1504 │ │ backward_pre_hooks = [] │ │ │ │ /root/miniconda3/envs/train/lib/python3.10/site-packages/peft/tuners/lora.py:565 in forward │ │ │ │ 562 │ │ │ │ self.unmerge() │ │ 563 │ │ │ result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self. │ │ 564 │ │ elif self.r[self.active_adapter] > 0 and not self.merged: │ │ ❱ 565 │ │ │ result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self. │ │ 566 │ │ │ │ │ 567 │ │ │ x = x.to(self.lora_A[self.active_adapter].weight.dtype) │ │ 568 │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ RuntimeError: mat1 and mat2 shapes cannot be multiplied (327x4096 and 1x8388608)
返回再看源码感觉是lomo_lora_trainer里 的问题。
请问如果需要完全剔除deepspeed并想要成功运行LOMO+QLoRA,我应该做何修改?