OpenMined / PySyft

Perform data science on data that remains in someone else's server
https://www.openmined.org/
Apache License 2.0
9.54k stars 1.99k forks source link

RuntimeError: input.size(-1) must be equal to input_size. Expected 200, got 0 #4880

Closed koch-tobias closed 3 years ago

koch-tobias commented 3 years ago

Question

RuntimeError: input.size(-1) must be equal to input_size. Expected 200, got 0.

Further Information

Hi everyone,

does anyone know a solution for this Error? I am trying to switch my PyTorch network to an Federated Learning network but i always get this Error.

I’m using Google Colab an train on GPU. When I print the size of embeds I get 0, but I don’t understand why the data is not used there.

Also I'm using 200d Glove-Embedding.

If possible, I would like to avoid using the new 0.3 version as there are still very few examples available.


RuntimeError                              Traceback (most recent call last)
<ipython-input-42-fd4a5223524b> in <module>()
----> 1 model, history = train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=10)
      2 #model = train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=10)

6 frames
<ipython-input-41-a386f044d41f> in train_model(model, dataloaders, criterion, optimizer, num_epochs, batch_size)
     68                         # detaching it from its history on the last instance.
     69 
---> 70                         outputs = model(inputs)
     71 
     72                         loss = criterion(outputs, labels)

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    530             result = self._slow_forward(*input, **kwargs)
    531         else:
--> 532             result = self.forward(*input, **kwargs)
    533         for hook in self._forward_hooks.values():
    534             hook_result = hook(self, input, result)

<ipython-input-36-64e9a7d68b11> in forward(self, sentence)
     11     def forward(self, sentence):
     12         embeds = self.word_embeddings(sentence)
---> 13         lstm_out, (h,t) = self.lstm(embeds)
     14         lstm_out = self.dropout(lstm_out)
     15         tag_space = self.output(lstm_out[:,-1,:])

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    530             result = self._slow_forward(*input, **kwargs)
    531         else:
--> 532             result = self.forward(*input, **kwargs)
    533         for hook in self._forward_hooks.values():
    534             hook_result = hook(self, input, result)

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py in forward(self, input, hx)
    554             hx = self.permute_hidden(hx, sorted_indices)
    555 
--> 556         self.check_forward_args(input, hx, batch_sizes)
    557         if batch_sizes is None:
    558             result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py in check_forward_args(self, input, hidden, batch_sizes)
    506     def check_forward_args(self, input, hidden, batch_sizes):
    507         # type: (Tensor, Tuple[Tensor, Tensor], Optional[Tensor]) -> None
--> 508         self.check_input(input, batch_sizes)
    509         expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes)
    510 

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py in check_input(self, input, batch_sizes)
    157             raise RuntimeError(
    158                 'input.size(-1) must be equal to input_size. Expected {}, got {}'.format(
--> 159                     self.input_size, input.size(-1)))
    160 
    161     def get_expected_hidden_size(self, input, batch_sizes):

RuntimeError: input.size(-1) must be equal to input_size. Expected 200, got 0
embedding_dim = 200 
hidden_layers = 256
num_layers = 2
dropout = 0.1
learningrate=0.00005
BATCH_SIZE = 128

class LSTM(nn.Module):

def __init__(self, embedding_dim, hidden_layers,vocab_size,num_layers,pretrained_weights):
    super(LSTM, self).__init__()

    self.word_embeddings = nn.Embedding(vocab_size, embedding_dim,_weight=pretrained_weights, padding_idx=0)
    self.lstm = nn.LSTM(embedding_dim, hidden_size=hidden_layers,num_layers=num_layers, batch_first=True)
    self.output = nn.Linear(hidden_layers, vocab_size, bias=False)
    self.dropout = nn.Dropout(0.1)

def forward(self, sentence):
    embeds = self.word_embeddings(sentence)
    lstm_out, (h,t) = self.lstm(embeds)
    lstm_out = self.dropout(lstm_out)
    tag_space = self.output(lstm_out[:,-1,:])

    return tag_space

The Error throws in this line: lstm_out, (h,t) = self.lstm(embeds)


 for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)
    train_loss = 0
    acc_score = 0

    valid_loss = 0
    acc_valid_score = 0

    #Variables to store the losses temporary
    train_loss_result = 0
    acc_score_result = 0
    valid_loss_result = 0
    acc_valid_score_result = 0

    valid_loss_not_decreased = 0

    if valid_loss_not_decreased == 5:
      break

    # Each epoch has a training and validation phase
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()  # Set model to training mode
        else:
            model.eval()   # Set model to evaluate mode

        for inputs,labels in dataloaders[phase]:

            # Location of current batch
            worker = inputs.location  # <---- Where will send the model to

            #model.to(device)

            model = model.send(worker)   # <---- for Federated Learning

            inputs, labels = inputs.to(device), labels.to(device)

            print("--------> INPUT: ",inputs)
            print("--------> LABEL: ",labels)

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
                # Get model outputs and calculate loss

                # backward + optimize only if in training phase
                if phase == 'train':
                    # we need to clear out the hidden state of the LSTM,
                    # detaching it from its history on the last instance.

                    outputs = model(inputs)

                    loss = criterion(outputs, labels)
                    acc = binary_accuracy(outputs,labels)       
                    acc_score = acc_score + acc
                    train_loss = train_loss + loss.item()
                    loss.backward()

                    optimizer.step()

Screenshots

If applicable, add screenshots to help explain your question.

System Information

Additional Context

Add any other context about the problem here.

tudorcebere commented 3 years ago

Hi! 0.2 hit EOL with the release of 0.5.0rc1, no issues/PRs are going to target this specific version anymore, but checkout 0.5.0rc1, as it's close to feature parity with 0.2.x.