Open zxy66688 opened 2 weeks ago
Please show you vectorizer config.
Please show you vectorizer config.
vectorizer = kag.common.vectorizer.openAIVectorizer
Please show you vectorizer config.
vectorizer = kag.common.vectorizer.openAIVectorizer
The full content of the [vectorizer]
section in kag_config.cfg please.
Please show you vectorizer config.
vectorizer = kag.common.vectorizer.openAIVectorizer
The full content of the
[vectorizer]
section in kag_config.cfg please.
[vectorizer] vectorizer = kag.common.vectorizer.OpenAIVectorizer model = bge-m3 api_key = EMPTY base_url = http://127.0.0.1:11434/v1 vector_dimensions = 1024
[vectorizer] vectorizer = kag.common.vectorizer.OpenAIVectorizer model = bge-m3 api_key = EMPTY base_url = http://127.0.0.1:11434/v1 vector_dimensions = 1024
The ip address in base_url
might be incorrect. You may need to change base_url
to http://host.docker.internal:11434/v1
.
Please refere to 5. Configure KAG to use the bge-m3 model deployed with Ollama.
[vectorizer] vectorizer = kag.common.vectorizer.OpenAIVectorizer model = bge-m3 api_key = EMPTY base_url = http://127.0.0.1:11434/v1 vector_dimensions = 1024
The ip address in
base_url
might be incorrect. You may need to changebase_url
tohttp://host.docker.internal:11434/v1
. Please refere to 5. Configure KAG to use the bge-m3 model deployed with Ollama.
i have changed the base_url,but still have the same problem [vectorizer] vectorizer = kag.common.vectorizer.OpenAIVectorizer model = bge-m3 api_key = EMPTY base_url = http://host.docker.internal:11434/v1 vector_dimensions = 1024
[vectorizer] vectorizer = kag.common.vectorizer.OpenAIVectorizer model = bge-m3 api_key = EMPTY base_url = http://127.0.0.1:11434/v1 vector_dimensions = 1024
The ip address in
base_url
might be incorrect. You may need to changebase_url
tohttp://host.docker.internal:11434/v1
. Please refere to 5. Configure KAG to use the bge-m3 model deployed with Ollama.i have changed the base_url,but still have the same problem [vectorizer] vectorizer = kag.common.vectorizer.OpenAIVectorizer model = bge-m3 api_key = EMPTY base_url = http://host.docker.internal:11434/v1 vector_dimensions = 1024
It seems like your embedding model is inaccessible in developer mode, please verify the configuration in the following order: 1、Have you deployed your embedding model with ollama(you can refer to embedding model with ollama) 2、Is your embedding model accessible by KAG ?(you can refer to Test embedding generation with bge-m3)
Traceback (most recent call last): File "F:\openspg\KAG\kag\examples\musique\builder\indexer.py", line 89, in
buildKB(corpusFilePath)
File "F:\openspg\KAG\kag\examples\musique\builder\indexer.py", line 77, in buildKB
MusiqueBuilderChain().invoke(file_path=corpusFilePath, max_workers=20)
File "D:\anaconda3\envs\kag-demo\lib\site-packages\knext\builder\builder_chain_abc.py", line 26, in invoke
chain.invoke(input=file_path, max_workers=max_workers, kwargs)
File "D:\anaconda3\envs\kag-demo\lib\site-packages\knext\common\base\chain.py", line 64, in invoke
node, result = future.result()
File "D:\anaconda3\envs\kag-demo\lib\concurrent\futures_base.py", line 451, in result
return self.get_result()
File "D:\anaconda3\envs\kag-demo\lib\concurrent\futures_base.py", line 403, in get_result
raise self._exception
File "D:\anaconda3\envs\kag-demo\lib\concurrent\futures\thread.py", line 58, in run
result = self.fn(*self.args, *self.kwargs)
File "D:\anaconda3\envs\kag-demo\lib\site-packages\knext\common\base\chain.py", line 46, in execute_node
ret = inner_future.result()
File "D:\anaconda3\envs\kag-demo\lib\concurrent\futures_base.py", line 451, in result
return self.get_result()
File "D:\anaconda3\envs\kag-demo\lib\concurrent\futures_base.py", line 403, in get_result
raise self._exception
File "D:\anaconda3\envs\kag-demo\lib\concurrent\futures\thread.py", line 58, in run
result = self.fn(self.args, self.kwargs)
File "f:\openspg\kag\kag\builder\component\vectorizer\batch_vectorizer.py", line 199, in invoke
modified_input = self._generate_embedding_vectors(self.vectorizer, input)
File "f:\openspg\kag\kag\builder\component\vectorizer\batch_vectorizer.py", line 188, in _generate_embedding_vectors
generator.batch_generate(node_batch)
File "f:\openspg\kag\kag\builder\component\vectorizer\batch_vectorizer.py", line 125, in batch_generate
manager.batch_generate(self._vectorizer)
File "f:\openspg\kag\kag\builder\component\vectorizer\batch_vectorizer.py", line 94, in batch_generate
vectors = self._generate_vectors(vectorizer, text_batch)
File "f:\openspg\kag\kag\builder\component\vectorizer\batch_vectorizer.py", line 84, in _generate_vectors
vectors = vectorizer.vectorize(texts)
File "f:\openspg\kag\kag\common\vectorizer\openai_vectorizer.py", line 57, in vectorize
results = self.client.embeddings.create(input=texts, model=self.model)
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai\resources\embeddings.py", line 124, in create
return self._post(
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai_base_client.py", line 1278, in post
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai_base_client.py", line 955, in request
return self._request(
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai_base_client.py", line 1044, in _request
return self._retry_request(
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai_base_client.py", line 1093, in _retry_request
return self._request(
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai_base_client.py", line 1044, in _request
return self._retry_request(
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai_base_client.py", line 1093, in _retry_request
return self._request(
File "D:\anaconda3\envs\kag-demo\lib\site-packages\openai_base_client.py", line 1059, in _request
raise self._make_status_error_from_response(err.response) from None
openai.InternalServerError: Error code: 502