Oufattole / meds-torch

MIT License
15 stars 1 forks source link

Enable users to define their own dataset class #125

Open payalchandak opened 2 weeks ago

payalchandak commented 2 weeks ago

Summary by CodeRabbit

Release Notes

coderabbitai[bot] commented 2 weeks ago

Walkthrough

The changes in this pull request involve modifications to several configuration files for the meds_torch project. Key updates include the replacement of task name references from ${data.task_name} to ${data.dataset.task_name} across multiple YAML files, enhancing the specificity of dataset-related configurations. Additionally, new configuration files for dataset management have been introduced, while some existing files have been removed. The PytorchDataset class has undergone structural changes, including enhanced error handling and a simplified initialization process. Overall, these modifications aim to improve the organization and robustness of the dataset management system.

Changes

File Path Change Summary
MIMICIV_TUTORIAL/configs/meds-torch-configs/experiment/eic_mtr.yaml Updated tags entry from ${data.task_name} to ${data.dataset.task_name}.
MIMICIV_TUTORIAL/configs/meds-torch-configs/experiment/text_code_mtr.yaml Updated tags entry from ${data.task_name} to ${data.dataset.task_name}.
MIMICIV_TUTORIAL/configs/meds-torch-configs/experiment/triplet_mtr.yaml Updated tags entry from ${data.task_name} to ${data.dataset.task_name}.
src/meds_torch/configs/data/dataset/multiwindow_pytorch_dataset.yaml Added configuration for MultiWindowPytorchDataset, including defaults, _target_, subject_level_sampling, and raw_windows_fp.
src/meds_torch/configs/data/dataset/pytorch_dataset.yaml Updated _target_ path, added split: train, and modified several path parameters to use ${data.dataset.*}. Removed dataloader section.
src/meds_torch/configs/data/dataset/random_windows_pytorch_dataset.yaml Added new configuration for random window sampling dataset.
src/meds_torch/configs/data/default.yaml Introduced structured setup for dataset management, specifying defaults for training phases.
src/meds_torch/configs/data/multiwindow_pytorch_dataset.yaml Deleted file containing previous multi-window dataset configuration.
src/meds_torch/configs/data/random_windows_pytorch_dataset.yaml Deleted file containing previous random windows dataset configuration.
src/meds_torch/configs/model/backbone/default.yaml Updated vocab_size reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/backbone/eic_transformer_decoder.yaml Updated num_tokens reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/backbone/eic_transformer_encoder.yaml Updated num_tokens reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/backbone/eic_transformer_encoder_attn_avg.yaml Updated num_tokens reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/backbone/triplet_transformer_decoder.yaml Updated num_tokens reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/backbone/triplet_transformer_encoder.yaml Updated num_tokens reference to ${data.dataset.tokenizer}.
src/meds_torch/configs/model/backbone/triplet_transformer_encoder_attn_avg.yaml Updated num_tokens reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/ebcl.yaml Updated _resolved_max_seq_len, vocab_size, and task_name references to data.dataset.*.
src/meds_torch/configs/model/eic_forecasting.yaml Updated _resolved_max_seq_len, vocab_size, and task_name references to data.dataset.*.
src/meds_torch/configs/model/input_encoder/eic_encoder.yaml Updated vocab_size reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/input_encoder/text_code_encoder.yaml Updated several parameters to reference data.dataset.*.
src/meds_torch/configs/model/input_encoder/triplet_encoder.yaml Updated vocab_size reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/input_encoder/triplet_prompt_encoder.yaml Updated vocab_size reference to ${data.dataset.vocab_size}.
src/meds_torch/configs/model/ocp.yaml Updated _resolved_max_seq_len, vocab_size, and task_name references to data.dataset.*.
src/meds_torch/configs/model/supervised.yaml Updated _resolved_max_seq_len, vocab_size, and task_name references to data.dataset.*.
src/meds_torch/configs/model/triplet_forecasting.yaml Updated _resolved_max_seq_len, vocab_size, and task_name references to data.dataset.*.
src/meds_torch/configs/model/value_forecasting.yaml Updated _resolved_max_seq_len, vocab_size, and task_name references to data.dataset.*.
src/meds_torch/configs/train.yaml Updated data from pytorch_dataset to default and model from supervised to triplet_forecasting.
src/meds_torch/data/components/pytorch_dataset.py Updated class to inherit from Module, simplified constructor, and enhanced error handling.
src/meds_torch/data/datamodule.py Removed get_dataset method and simplified dataset initialization in the constructor.

🐇 In the meadow, changes bloom,
Tags now point where datasets loom.
Configs refined, paths align,
For every task, the data will shine.
With each update, the code grows bright,
Hop along, it feels just right! 🌼


Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

❤️ Share - [X](https://twitter.com/intent/tweet?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A&url=https%3A//coderabbit.ai) - [Mastodon](https://mastodon.social/share?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A%20https%3A%2F%2Fcoderabbit.ai) - [Reddit](https://www.reddit.com/submit?title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&text=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code.%20Check%20it%20out%3A%20https%3A//coderabbit.ai) - [LinkedIn](https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fcoderabbit.ai&mini=true&title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&summary=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code)
🪧 Tips ### Chat There are 3 ways to chat with [CodeRabbit](https://coderabbit.ai): - Review comments: Directly reply to a review comment made by CodeRabbit. Example: - `I pushed a fix in commit , please review it.` - `Generate unit testing code for this file.` - `Open a follow-up GitHub issue for this discussion.` - Files and specific lines of code (under the "Files changed" tab): Tag `@coderabbitai` in a new review comment at the desired location with your query. Examples: - `@coderabbitai generate unit testing code for this file.` - `@coderabbitai modularize this function.` - PR comments: Tag `@coderabbitai` in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples: - `@coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.` - `@coderabbitai read src/utils.ts and generate unit testing code.` - `@coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.` - `@coderabbitai help me debug CodeRabbit configuration file.` Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments. ### CodeRabbit Commands (Invoked using PR comments) - `@coderabbitai pause` to pause the reviews on a PR. - `@coderabbitai resume` to resume the paused reviews. - `@coderabbitai review` to trigger an incremental review. This is useful when automatic reviews are disabled for the repository. - `@coderabbitai full review` to do a full review from scratch and review all the files again. - `@coderabbitai summary` to regenerate the summary of the PR. - `@coderabbitai resolve` resolve all the CodeRabbit review comments. - `@coderabbitai configuration` to show the current CodeRabbit configuration for the repository. - `@coderabbitai help` to get help. ### Other keywords and placeholders - Add `@coderabbitai ignore` anywhere in the PR description to prevent this PR from being reviewed. - Add `@coderabbitai summary` to generate the high-level summary at a specific location in the PR description. - Add `@coderabbitai` anywhere in the PR title to generate the title automatically. ### CodeRabbit Configuration File (`.coderabbit.yaml`) - You can programmatically configure CodeRabbit by adding a `.coderabbit.yaml` file to the root of your repository. - Please see the [configuration documentation](https://docs.coderabbit.ai/guides/configure-coderabbit) for more information. - If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: `# yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json` ### Documentation and Community - Visit our [Documentation](https://coderabbit.ai/docs) for detailed information on how to use CodeRabbit. - Join our [Discord Community](http://discord.gg/coderabbit) to get help, request features, and share feedback. - Follow us on [X/Twitter](https://twitter.com/coderabbitai) for updates and announcements.