PAIR-code / lit

The Learning Interpretability Tool: Interactively analyze ML models to understand their behavior in an extensible and framework agnostic interface.
https://pair-code.github.io/lit
Apache License 2.0
3.5k stars 357 forks source link

Issues in Running LIT #13

Open salmanahmed1993 opened 4 years ago

salmanahmed1993 commented 4 years ago

Hi There,

I am trying to run LIT Quick-start: sentiment classifier cd ~/lit python -m lit_nlp.examples.quickstart_sst_demo --port=5432

The output is:

(lit-nlp) C:\~\lit>python -m lit_nlp.examples.quickstart_sst_demo --port=5432 2020-08-20 14:37:27.651045: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 I0820 14:37:27.670744 33968 quickstart_sst_demo.py:47] Working directory: C:\Users\SB0079~1\AppData\Local\Temp\tmp2582r1b0 W0820 14:37:27.926524 33968 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0820 14:37:27.926524 33968 dataset_builder.py:184] Overwrite dataset info from restored data version. I0820 14:37:27.933496 33968 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) I0820 14:37:27.934466 33968 dataset_builder.py:399] Constructing tf.data.Dataset for split train, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 W0820 14:37:27.934466 33968 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits. W0820 14:37:35.189518 33968 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0820 14:37:35.190503 33968 dataset_builder.py:184] Overwrite dataset info from restored data version. I0820 14:37:35.192508 33968 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) I0820 14:37:35.192508 33968 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 I0820 14:37:35.302182 33968 tokenization_utils.py:306] Model name 'google/bert_uncased_L-2_H-128_A-2' not found in model shortcut name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). Assuming 'google/bert_uncased_L-2_H-128_A-2' is a path or url to a directory containing tokenizer files. I0820 14:37:35.302182 33968 tokenization_utils.py:317] Didn't find file google/bert_uncased_L-2_H-128_A-2. We won't load it. I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\added_tokens.json. We won't load it. I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\special_tokens_map.json. We won't load it. I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\tokenizer_config.json. We won't load it. Traceback (most recent call last): File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 60, in app.run(main) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run _run_main(main, args) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main sys.exit(main(argv)) File "C:\~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 48, in main run_finetuning(model_path) File "C:\~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 40, in run_finetuning model = glue_models.SST2Model(FLAGS.encoder_name, for_training=True) File "C:\~\lit\lit_nlp\examples\models\glue_models.py", line 319, in init kw) File "C:\~\lit\lit_nlp\examples\models\glue_models.py", line 59, in init model_name_or_path) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_auto.py", line 109, in from_pretrained return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, *kwargs) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 282, in from_pretrained return cls._from_pretrained(inputs, kwargs) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 346, in _from_pretrained list(cls.vocab_files_names.values()))) OSError: Model name 'google/bert_uncased_L-2_H-128_A-2' was not found in tokenizers model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). We assumed 'google/bert_uncased_L-2_H-128_A-2' was a path or url to a directory containing vocabulary files named ['vocab.txt'] but couldn't find such vocabulary files at this path or url.

For Running Quick start: language modeling

cd ~/lit python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased \ --port=5432

The error output is (lit-nlp) C:\~\lit>python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432 2020-08-20 14:32:20.119230: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 I0820 14:32:20.634253 32000 tokenization_utils.py:374] loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at C:\Users\SB00790107.cache\torch\transformers\26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084 I0820 14:32:21.133054 32000 configuration_utils.py:151] loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json from cache at C:\Users\SB00790107.cache\torch\transformers\4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517 I0820 14:32:21.143045 32000 configuration_utils.py:168] Model config { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "finetuning_task": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "num_labels": 2, "output_attentions": true, "output_hidden_states": true, "output_past": true, "pad_token_id": 0, "pruned_heads": {}, "torchscript": false, "type_vocab_size": 2, "use_bfloat16": false, "vocab_size": 30522 }

I0820 14:32:21.576282 32000 modeling_tf_utils.py:258] loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5 from cache at C:\Users\SB00790107.cache\torch\transformers\d667df51ec24c20190f01fb4c20a21debc4c4fc12f7e2f5441ac0a99690e3ee9.4733ec82e81d40e9cf5fd04556267d8958fb150e9339390fc64206b7e5a79c83.h5 W0820 14:32:24.903656 32000 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0820 14:32:24.904676 32000 dataset_builder.py:187] Load pre-computed datasetinfo (eg: splits) from bucket. I0820 14:32:25.158797 32000 dataset_info.py:410] Loading info from GCS for glue/sst2/0.0.2 I0820 14:32:26.526896 32000 dataset_builder.py:273] Generating dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) Downloading and preparing dataset glue (7.09 MiB) to C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]I0820 14:32:26.530886 32000 download_manager.py:241] Downloading https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8 into C:\Users\SB00790107\tensorflow_datasets\downloads\fire.goog.com_v0_b_mtl-sent-repr.apps.cowOhVrpNUsvqdZqI70Nq3ISu63l9SOhTqYqoz6uEW3-Y.zipalt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8.tmp.6f44416196e74a44a10bca183839e172... Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\urllib3\connectionpool.py:988: InsecureRequestWarning: Unverified HTTPS request is being made to host 'firebasestorage.googleapis.com'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings InsecureRequestWarning, Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Size...: 0%| | 0/7 [00:00<?, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s] Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 14%|███████████████████▎ | 1/7 [00:01<00:06, 1.10s/ MiB]

Extraction completed...: 0 file [00:01, ? file/s] Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 29%|██████████████████████████████████████▌ | 2/7 [00:01<00:04, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 43%|█████████████████████████████████████████████████████████▊ | 3/7 [00:01<00:03, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 57%|█████████████████████████████████████████████████████████████████████████████▏ | 4/7 [00:01<00:02, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 71%|████████████████████████████████████████████████████████████████████████████████████████████████▍ | 5/7 [00:01<00:01, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 86%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 6/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Extraction completed...: 0%| | 0/1 [00:01<?, ? file/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Extraction completed...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ file] Extraction completed...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ file]

Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 4.02 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ url] I0820 14:32:28.270815 32000 dataset_builder.py:812] Generating split train I0820 14:32:28.270815 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s]WARNING:tensorflow:From C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: tf.data.TFRecordDataset(path) W0820 14:32:39.338444 32000 deprecation.py:323] From C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: tf.data.TFRecordDataset(path)

Reading...: 0 examples [00:00, ? examples/s] Reading...: 64184 examples [00:00, 637222.07 examples/s]

Writing...: 0%| | 0/67349 [00:00<?, ? examples/s] Writing...: 15%|█████████████████▊ | 9980/67349 [00:00<00:00, 99082.42 examples/s] Writing...: 30%|███████████████████████████████████▌ | 20094/67349 [00:00<00:00, 99477.68 examples/s] Writing...: 45%|█████████████████████████████████████████████████████▎ | 30195/67349 [00:00<00:00, 99709.61 examples/s] Writing...: 60%|██████████████████████████████████████████████████████████████████████▊ | 40401/67349 [00:00<00:00, 100188.93 examples/s] Writing...: 75%|████████████████████████████████████████████████████████████████████████████████████████▋ | 50623/67349 [00:00<00:00, 100574.12 examples/s] Writing...: 90%|██████████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 60780/67349 [00:00<00:00, 100664.57 examples/s] I0820 14:32:40.169348 32000 dataset_builder.py:812] Generating split validation I0820 14:32:40.170345 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/872 [00:00<?, ? examples/s] I0820 14:32:40.370083 32000 dataset_builder.py:812] Generating split test I0820 14:32:40.373092 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/1821 [00:00<?, ? examples/s] I0820 14:32:40.717523 32000 dataset_builder.py:301] Skipping computing stats for mode ComputeStatsMode.AUTO. Dataset glue downloaded and prepared to C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2. Subsequent calls will reuse this data. I0820 14:32:40.735554 32000 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 I0820 14:32:41.163142 32000 dataset_builder.py:675] No config specified, defaulting to first: imdb_reviews/plain_text I0820 14:32:41.164139 32000 dataset_builder.py:187] Load pre-computed datasetinfo (eg: splits) from bucket. I0820 14:32:41.407350 32000 dataset_info.py:410] Loading info from GCS for imdb_reviews/plain_text/0.1.0 I0820 14:32:42.439117 32000 dataset_builder.py:273] Generating dataset imdb_reviews (C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0) Downloading and preparing dataset imdb_reviews (80.23 MiB) to C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s]I0820 14:32:42.443107 32000 download_manager.py:241] Downloading http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz into C:\Users\SB00790107\tensorflow_datasets\downloads\ai.stanfor.edu_amaas_sentime_aclImdb_v1PaujRp-TxjBWz59jHXsMDm5WiexbxzaFQkEnXc3Tvo8.tar.gz.tmp.69c9ef3d01b84444a160e5ba3160fb45... Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Size...: 0%| | 0/80 [00:00<?, ? MiB/s] Dl Completed...: 0%| | 0/1 [00:02<?, ? url/s] Dl Size...: 1%|█▋ | 1/80 [00:02<03:40, 2.80s/ MiB] Dl Completed...: 0%| | 0/1 [00:03<?, ? url/s] Dl Size...: 2%|███▎ | 2/80 [00:03<02:47, 2.15s/ MiB] Dl Completed...: 0%| | 0/1 [00:03<?, ? url/s] Dl Size...: 4%|█████ | 3/80 [00:03<02:06, 1.64s/ MiB] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 5%|██████▋ | 4/80 [00:04<01:31, 1.21s/ MiB] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 6%|████████▍ | 5/80 [00:04<01:09, 1.08 MiB/s] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 8%|██████████ | 6/80 [00:04<00:51, 1.43 MiB/s] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 9%|███████████▋ | 7/80 [00:04<00:39, 1.85 MiB/s] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 10%|█████████████▍ | 8/80 [00:04<00:30, 2.34 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 12%|████████████████▋ | 10/80 [00:05<00:24, 2.89 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 14%|██████████████████▎ | 11/80 [00:05<00:18, 3.74 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 16%|█████████████████████▌ | 13/80 [00:05<00:15, 4.30 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 19%|████████████████████████▉ | 15/80 [00:05<00:12, 5.33 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 22%|█████████████████████████████▉ | 18/80 [00:05<00:09, 6.42 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 25%|█████████████████████████████████▎ | 20/80 [00:05<00:07, 7.91 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 29%|██████████████████████████████████████▏ | 23/80 [00:06<00:06, 9.10 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 32%|███████████████████████████████████████████▏ | 26/80 [00:06<00:05, 10.61 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 36%|████████████████████████████████████████████████▏ | 29/80 [00:06<00:04, 12.09 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 40%|█████████████████████████████████████████████████████▏ | 32/80 [00:06<00:03, 13.50 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 44%|██████████████████████████████████████████████████████████▏ | 35/80 [00:06<00:03, 14.62 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 46%|█████████████████████████████████████████████████████████████▌ | 37/80 [00:06<00:02, 15.45 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 50%|██████████████████████████████████████████████████████████████████▌ | 40/80 [00:07<00:02, 14.49 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 54%|███████████████████████████████████████████████████████████████████████▍ | 43/80 [00:07<00:02, 15.40 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 57%|████████████████████████████████████████████████████████████████████████████▍ | 46/80 [00:07<00:02, 16.19 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 61%|█████████████████████████████████████████████████████████████████████████████████▍ | 49/80 [00:07<00:01, 16.75 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 64%|████████████████████████████████████████████████████████████████████████████████████▊ | 51/80 [00:07<00:01, 17.14 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 68%|█████████████████████████████████████████████████████████████████████████████████████████▊ | 54/80 [00:07<00:01, 15.51 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 71%|██████████████████████████████████████████████████████████████████████████████████████████████▊ | 57/80 [00:08<00:01, 16.21 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 75%|███████████████████████████████████████████████████████████████████████████████████████████████████▊ | 60/80 [00:08<00:01, 16.74 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 79%|████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 63/80 [00:08<00:00, 17.16 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 82%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 66/80 [00:08<00:00, 17.75 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 86%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 69/80 [00:08<00:00, 17.19 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 89%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 71/80 [00:08<00:00, 17.41 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Size...: 92%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 74/80 [00:09<00:00, 16.26 MiB/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Size...: 96%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 77/80 [00:09<00:00, 16.68 MiB/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.58s/ url] Dl Size...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80/80 [00:09<00:00, 17.05 MiB/s] Dl Size...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80/80 [00:09<00:00, 8.34 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.60s/ url] I0820 14:32:52.047359 32000 dataset_builder.py:812] Generating split train I0820 14:32:52.050351 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/10 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 20%|██████████████████████████ | 2/10 [00:00<00:00, 14.12 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 40%|████████████████████████████████████████████████████ | 4/10 [00:00<00:00, 14.21 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 60%|██████████████████████████████████████████████████████████████████████████████ | 6/10 [00:00<00:00, 14.12 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 80%|████████████████████████████████████████████████████████████████████████████████████████████████████████ | 8/10 [00:00<00:00, 14.14 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] I0820 14:33:03.785629 32000 dataset_builder.py:812] Generating split test I0820 14:33:03.788612 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/10 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 20%|██████████████████████████ | 2/10 [00:00<00:00, 14.22 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 40%|████████████████████████████████████████████████████ | 4/10 [00:00<00:00, 14.37 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 60%|██████████████████████████████████████████████████████████████████████████████ | 6/10 [00:00<00:00, 14.34 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 80%|████████████████████████████████████████████████████████████████████████████████████████████████████████ | 8/10 [00:00<00:00, 14.05 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] I0820 14:33:15.452958 32000 dataset_builder.py:812] Generating split unsupervised I0820 14:33:15.457943 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/20 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 10%|█████████████ | 2/20 [00:00<00:01, 14.01 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 20%|██████████████████████████ | 4/20 [00:00<00:01, 13.65 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 30%|███████████████████████████████████████ | 6/20 [00:00<00:01, 13.69 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 40%|████████████████████████████████████████████████████ | 8/20 [00:00<00:00, 13.57 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 50%|████████████████████████████████████████████████████████████████▌ | 10/20 [00:00<00:00, 13.85 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 60%|█████████████████████████████████████████████████████████████████████████████▍ | 12/20 [00:00<00:00, 13.29 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 70%|██████████████████████████████████████████████████████████████████████████████████████████▎ | 14/20 [00:01<00:00, 13.38 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 80%|███████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 16/20 [00:01<00:00, 13.22 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 90%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 18/20 [00:01<00:00, 13.34 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] I0820 14:33:32.041668 32000 dataset_builder.py:301] Skipping computing stats for mode ComputeStatsMode.AUTO. Dataset imdb_reviews downloaded and prepared to C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0. Subsequent calls will reuse this data. I0820 14:33:32.053635 32000 dataset_builder.py:399] Constructing tf.data.Dataset for split test, from C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0 I0820 14:33:34.528547 32000 pretrained_lm_demo.py:92] Dataset: 'sst_dev' with 872 examples I0820 14:33:34.536590 32000 pretrained_lm_demo.py:92] Dataset: 'imdb_train' with 25000 examples I0820 14:33:34.536590 32000 pretrained_lm_demo.py:92] Dataset: 'blank' with 0 examples I0820 14:33:34.536590 32000 devserver.py:79] ( ( )\ ) )\ ) * ) (()/((()/(` ) /( /())/())( )()) ()) ()) ((()) | | | || | | | | | | | |__|__| ||

I0820 14:33:34.536590 32000 dev_server.py:80] Starting LIT server... Traceback (most recent call last): File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\~\lit\lit_nlp\examples\pretrained_lm_demo.py", line 102, in app.run(main) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run _run_main(main, args) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main sys.exit(main(argv)) File "C:\~\lit\lit_nlp\examples\pretrained_lm_demo.py", line 98, in main lit_demo.serve() File "C:\~\lit\lit_nlp\dev_server.py", line 81, in serve app = lit_app.LitApp(*self._app_args, **self._app_kw) File "C:\~\lit\lit_nlp\app.py", line 293, in init os.mkdir(data_dir) FileNotFoundError: [WinError 3] The system cannot find the path specified: '/tmp/lit_data'

marciowelter commented 4 years ago

The system cannot find the path specified: '/tmp/lit_data' I created this directory '/tmp/lit_data' and done. (windows: c:\tmp\lit_data)

Em qui., 20 de ago. de 2020 às 10:53, salmanahmed1993 < notifications@github.com> escreveu:

Hi There,

I am trying to run LIT Quick-start: sentiment classifier cd ~/lit python -m lit_nlp.examples.quickstart_sst_demo --port=5432

The output is: (lit-nlp) C:~\lit>python -m lit_nlp.examples.quickstart_sst_demo --port=5432 2020-08-20 14:37:27.651045: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 I0820 14:37:27.670744 33968 quickstart_sst_demo.py:47] Working directory: C:\Users\SB0079~1\AppData\Local\Temp\tmp2582r1b0 W0820 14:37:27.926524 33968 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0820 14:37:27.926524 33968 dataset_builder.py:184] Overwrite dataset info from restored data version. I0820 14:37:27.933496 33968 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) I0820 14:37:27.934466 33968 dataset_builder.py:399] Constructing tf.data.Dataset for split train, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 W0820 14:37:27.934466 33968 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits. W0820 14:37:35.189518 33968 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0820 14:37:35.190503 33968 dataset_builder.py:184] Overwrite dataset info from restored data version. I0820 14:37:35.192508 33968 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) I0820 14:37:35.192508 33968 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 I0820 14:37:35.302182 33968 tokenization_utils.py:306] Model name 'google/bert_uncased_L-2_H-128_A-2' not found in model shortcut name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). Assuming 'google/bert_uncased_L-2_H-128_A-2' is a path or url to a directory containing tokenizer files. I0820 14:37:35.302182 33968 tokenization_utils.py:317] Didn't find file google/bert_uncased_L-2_H-128_A-2. We won't load it. I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\added_tokens.json. We won't load it. I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\special_tokens_map.json. We won't load it. I0820 14:37:35.303180 33968 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\tokenizer_config.json. We won't load it. Traceback (most recent call last): File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 60, in app.run(main) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run _run_main(main, args) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main sys.exit(main(argv)) File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 48, in main run_finetuning(model_path) File "C:~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 40, in run_finetuning model = glue_models.SST2Model(FLAGS.encoder_name, for_training=True) File "C:~\lit\lit_nlp\examples\models\glue_models.py", line 319, in init kw) File "C:~\lit\lit_nlp\examples\models\glue_models.py", line 59, in init model_name_or_path) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_auto.py", line 109, in from_pretrained return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, *kwargs) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 282, in from_pretrained return cls._from_pretrained(inputs, kwargs) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 346, in _from_pretrained list(cls.vocab_files_names.values()))) OSError: Model name 'google/bert_uncased_L-2_H-128_A-2' was not found in tokenizers model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). We assumed 'google/bert_uncased_L-2_H-128_A-2' was a path or url to a directory containing vocabulary files named ['vocab.txt'] but couldn't find such vocabulary files at this path or url.

For Running Quick start: language modeling

cd ~/lit python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432

The error output is (lit-nlp) C:~\lit>python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432 2020-08-20 14:32:20.119230: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 I0820 14:32:20.634253 32000 tokenization_utils.py:374] loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at C:\Users\SB00790107.cache\torch\transformers\26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084 I0820 14:32:21.133054 32000 configuration_utils.py:151] loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json from cache at C:\Users\SB00790107.cache\torch\transformers\4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517 I0820 14:32:21.143045 32000 configuration_utils.py:168] Model config { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "finetuning_task": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "num_labels": 2, "output_attentions": true, "output_hidden_states": true, "output_past": true, "pad_token_id": 0, "pruned_heads": {}, "torchscript": false, "type_vocab_size": 2, "use_bfloat16": false, "vocab_size": 30522 }

I0820 14:32:21.576282 32000 modeling_tf_utils.py:258] loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5 from cache at C:\Users\SB00790107.cache\torch\transformers\d667df51ec24c20190f01fb4c20a21debc4c4fc12f7e2f5441ac0a99690e3ee9.4733ec82e81d40e9cf5fd04556267d8958fb150e9339390fc64206b7e5a79c83.h5 W0820 14:32:24.903656 32000 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0820 14:32:24.904676 32000 dataset_builder.py:187] Load pre-computed datasetinfo (eg: splits) from bucket. I0820 14:32:25.158797 32000 dataset_info.py:410] Loading info from GCS for glue/sst2/0.0.2 I0820 14:32:26.526896 32000 dataset_builder.py:273] Generating dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) �[1mDownloading and preparing dataset glue (7.09 MiB) to C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2...�[0m Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]I0820 14:32:26.530886 32000 download_manager.py:241] Downloading https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8 into C:\Users\SB00790107\tensorflow_datasets\downloads\fire.goog.com_v0_b_mtl-sent-repr.apps.cowOhVrpNUsvqdZqI70Nq3ISu63l9SOhTqYqoz6uEW3-Y.zipalt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8.tmp.6f44416196e74a44a10bca183839e172... Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\urllib3\connectionpool.py:988: InsecureRequestWarning: Unverified HTTPS request is being made to host ' firebasestorage.googleapis.com'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings InsecureRequestWarning, Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Size...: 0%| | 0/7 [00:00<?, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s] Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 14%|███████████████████▎ | 1/7 [00:01<00:06, 1.10s/ MiB]

Extraction completed...: 0 file [00:01, ? file/s] Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 29%|██████████████████████████████████████▌ | 2/7 [00:01<00:04, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 43%|█████████████████████████████████████████████████████████▊ | 3/7 [00:01<00:03, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 57%|█████████████████████████████████████████████████████████████████████████████▏ | 4/7 [00:01<00:02, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 71%|████████████████████████████████████████████████████████████████████████████████████████████████▍ | 5/7 [00:01<00:01, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 86%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 6/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 0%| | 0/1 [00:01<?, ? url/s] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Extraction completed...: 0%| | 0/1 [00:01<?, ? file/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.40s/ url] Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 1.19 MiB/s]

Extraction completed...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ file] Extraction completed...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ file]

Dl Size...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 4.02 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.74s/ url] I0820 14:32:28.270815 32000 dataset_builder.py:812] Generating split train I0820 14:32:28.270815 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s]WARNING:tensorflow:From C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: tf.data.TFRecordDataset(path) W0820 14:32:39.338444 32000 deprecation.py:323] From C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\tensorflow_datasets\core\file_format_adapter.py:209: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: tf.data.TFRecordDataset(path)

Reading...: 0 examples [00:00, ? examples/s] Reading...: 64184 examples [00:00, 637222.07 examples/s]

Writing...: 0%| | 0/67349 [00:00<?, ? examples/s] Writing...: 15%|█████████████████▊ | 9980/67349 [00:00<00:00, 99082.42 examples/s] Writing...: 30%|███████████████████████████████████▌ | 20094/67349 [00:00<00:00, 99477.68 examples/s] Writing...: 45%|█████████████████████████████████████████████████████▎ | 30195/67349 [00:00<00:00, 99709.61 examples/s] Writing...: 60%|██████████████████████████████████████████████████████████████████████▊ | 40401/67349 [00:00<00:00, 100188.93 examples/s] Writing...: 75%|████████████████████████████████████████████████████████████████████████████████████████▋ | 50623/67349 [00:00<00:00, 100574.12 examples/s] Writing...: 90%|██████████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 60780/67349 [00:00<00:00, 100664.57 examples/s] I0820 14:32:40.169348 32000 dataset_builder.py:812] Generating split validation I0820 14:32:40.170345 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/872 [00:00<?, ? examples/s] I0820 14:32:40.370083 32000 dataset_builder.py:812] Generating split test I0820 14:32:40.373092 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/1 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/1821 [00:00<?, ? examples/s] I0820 14:32:40.717523 32000 dataset_builder.py:301] Skipping computing stats for mode ComputeStatsMode.AUTO. �[1mDataset glue downloaded and prepared to C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2. Subsequent calls will reuse this data.�[0m I0820 14:32:40.735554 32000 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 I0820 14:32:41.163142 32000 dataset_builder.py:675] No config specified, defaulting to first: imdb_reviews/plain_text I0820 14:32:41.164139 32000 dataset_builder.py:187] Load pre-computed datasetinfo (eg: splits) from bucket. I0820 14:32:41.407350 32000 dataset_info.py:410] Loading info from GCS for imdb_reviews/plain_text/0.1.0 I0820 14:32:42.439117 32000 dataset_builder.py:273] Generating dataset imdb_reviews (C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0) �[1mDownloading and preparing dataset imdb_reviews (80.23 MiB) to C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0...�[0m Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s]I0820 14:32:42.443107 32000 download_manager.py:241] Downloading http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz into C:\Users\SB00790107\tensorflow_datasets\downloads\ai.stanfor.edu_amaas_sentime_aclImdb_v1PaujRp-TxjBWz59jHXsMDm5WiexbxzaFQkEnXc3Tvo8.tar.gz.tmp.69c9ef3d01b84444a160e5ba3160fb45... Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:00<?, ? url/s] Dl Size...: 0%| | 0/80 [00:00<?, ? MiB/s] Dl Completed...: 0%| | 0/1 [00:02<?, ? url/s] Dl Size...: 1%|█▋ | 1/80 [00:02<03:40, 2.80s/ MiB] Dl Completed...: 0%| | 0/1 [00:03<?, ? url/s] Dl Size...: 2%|███▎ | 2/80 [00:03<02:47, 2.15s/ MiB] Dl Completed...: 0%| | 0/1 [00:03<?, ? url/s] Dl Size...: 4%|█████ | 3/80 [00:03<02:06, 1.64s/ MiB] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 5%|██████▋ | 4/80 [00:04<01:31, 1.21s/ MiB] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 6%|████████▍ | 5/80 [00:04<01:09, 1.08 MiB/s] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 8%|██████████ | 6/80 [00:04<00:51, 1.43 MiB/s] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 9%|███████████▋ | 7/80 [00:04<00:39, 1.85 MiB/s] Dl Completed...: 0%| | 0/1 [00:04<?, ? url/s] Dl Size...: 10%|█████████████▍ | 8/80 [00:04<00:30, 2.34 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 12%|████████████████▋ | 10/80 [00:05<00:24, 2.89 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 14%|██████████████████▎ | 11/80 [00:05<00:18, 3.74 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 16%|█████████████████████▌ | 13/80 [00:05<00:15, 4.30 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 19%|████████████████████████▉ | 15/80 [00:05<00:12, 5.33 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 22%|█████████████████████████████▉ | 18/80 [00:05<00:09, 6.42 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Size...: 25%|█████████████████████████████████▎ | 20/80 [00:05<00:07, 7.91 MiB/s] Dl Completed...: 0%| | 0/1 [00:05<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 29%|██████████████████████████████████████▏ | 23/80 [00:06<00:06, 9.10 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 32%|███████████████████████████████████████████▏ | 26/80 [00:06<00:05, 10.61 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 36%|████████████████████████████████████████████████▏ | 29/80 [00:06<00:04, 12.09 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 40%|█████████████████████████████████████████████████████▏ | 32/80 [00:06<00:03, 13.50 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 44%|██████████████████████████████████████████████████████████▏ | 35/80 [00:06<00:03, 14.62 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Size...: 46%|█████████████████████████████████████████████████████████████▌ | 37/80 [00:06<00:02, 15.45 MiB/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:06<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 50%|██████████████████████████████████████████████████████████████████▌ | 40/80 [00:07<00:02, 14.49 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 54%|███████████████████████████████████████████████████████████████████████▍ | 43/80 [00:07<00:02, 15.40 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 57%|████████████████████████████████████████████████████████████████████████████▍ | 46/80 [00:07<00:02, 16.19 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 61%|█████████████████████████████████████████████████████████████████████████████████▍ | 49/80 [00:07<00:01, 16.75 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 64%|████████████████████████████████████████████████████████████████████████████████████▊ | 51/80 [00:07<00:01, 17.14 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Size...: 68%|█████████████████████████████████████████████████████████████████████████████████████████▊ | 54/80 [00:07<00:01, 15.51 MiB/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:07<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 71%|██████████████████████████████████████████████████████████████████████████████████████████████▊ | 57/80 [00:08<00:01, 16.21 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 75%|███████████████████████████████████████████████████████████████████████████████████████████████████▊ | 60/80 [00:08<00:01, 16.74 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 79%|████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 63/80 [00:08<00:00, 17.16 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 82%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 66/80 [00:08<00:00, 17.75 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 86%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 69/80 [00:08<00:00, 17.19 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Size...: 89%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 71/80 [00:08<00:00, 17.41 MiB/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:08<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Size...: 92%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 74/80 [00:09<00:00, 16.26 MiB/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Size...: 96%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 77/80 [00:09<00:00, 16.68 MiB/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 0%| | 0/1 [00:09<?, ? url/s] Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.58s/ url] Dl Size...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80/80 [00:09<00:00, 17.05 MiB/s] Dl Size...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80/80 [00:09<00:00, 8.34 MiB/s]

Dl Completed...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.60s/ url] I0820 14:32:52.047359 32000 dataset_builder.py:812] Generating split train I0820 14:32:52.050351 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/10 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 20%|██████████████████████████ | 2/10 [00:00<00:00, 14.12 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 40%|████████████████████████████████████████████████████ | 4/10 [00:00<00:00, 14.21 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 60%|██████████████████████████████████████████████████████████████████████████████ | 6/10 [00:00<00:00, 14.12 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 80%|████████████████████████████████████████████████████████████████████████████████████████████████████████ | 8/10 [00:00<00:00, 14.14 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] I0820 14:33:03.785629 32000 dataset_builder.py:812] Generating split test I0820 14:33:03.788612 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/10 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 20%|██████████████████████████ | 2/10 [00:00<00:00, 14.22 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 40%|████████████████████████████████████████████████████ | 4/10 [00:00<00:00, 14.37 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 60%|██████████████████████████████████████████████████████████████████████████████ | 6/10 [00:00<00:00, 14.34 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 80%|████████████████████████████████████████████████████████████████████████████████████████████████████████ | 8/10 [00:00<00:00, 14.05 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] I0820 14:33:15.452958 32000 dataset_builder.py:812] Generating split unsupervised I0820 14:33:15.457943 32000 file_format_adapter.py:233] Writing TFRecords Shuffling...: 0%| | 0/20 [00:00<?, ? shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 10%|█████████████ | 2/20 [00:00<00:01, 14.01 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 20%|██████████████████████████ | 4/20 [00:00<00:01, 13.65 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 30%|███████████████████████████████████████ | 6/20 [00:00<00:01, 13.69 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 40%|████████████████████████████████████████████████████ | 8/20 [00:00<00:00, 13.57 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 50%|████████████████████████████████████████████████████████████████▌ | 10/20 [00:00<00:00, 13.85 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 60%|█████████████████████████████████████████████████████████████████████████████▍ | 12/20 [00:00<00:00, 13.29 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 70%|██████████████████████████████████████████████████████████████████████████████████████████▎ | 14/20 [00:01<00:00, 13.38 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 80%|███████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 16/20 [00:01<00:00, 13.22 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] Shuffling...: 90%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 18/20 [00:01<00:00, 13.34 shard/s] Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s]

Reading...: 0 examples [00:00, ? examples/s]

Writing...: 0%| | 0/2500 [00:00<?, ? examples/s] I0820 14:33:32.041668 32000 dataset_builder.py:301] Skipping computing stats for mode ComputeStatsMode.AUTO. �[1mDataset imdb_reviews downloaded and prepared to C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0. Subsequent calls will reuse this data.�[0m I0820 14:33:32.053635 32000 dataset_builder.py:399] Constructing tf.data.Dataset for split test, from C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0 I0820 14:33:34.528547 32000 pretrained_lm_demo.py:92] Dataset: 'sst_dev' with 872 examples I0820 14:33:34.536590 32000 pretrained_lm_demo.py:92] Dataset: 'imdb_train' with 25000 examples I0820 14:33:34.536590 32000 pretrained_lm_demo.py:92] Dataset: 'blank' with 0 examples I0820 14:33:34.536590 32000 devserver.py:79] ( ( )\ ) )\ ) ) (()/((()/(` ) /( /())/())( )( )) ()) ()) (( ()) | | | || | | |* | | | | ||| ||

I0820 14:33:34.536590 32000 dev_server.py:80] Starting LIT server... Traceback (most recent call last): File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:~\lit\lit_nlp\examples\pretrained_lm_demo.py", line 102, in app.run(main) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run _run_main(main, args) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main sys.exit(main(argv)) File "C:~\lit\lit_nlp\examples\pretrained_lm_demo.py", line 98, in main lit_demo.serve() File "C:~\lit\lit_nlp\dev_server.py", line 81, in serve app = lit_app.LitApp(*self._app_args, *self._app_kw) File "C:~\lit\lit_nlp\app.py", line 293, in init* os.mkdir(data_dir) FileNotFoundError: [WinError 3] The system cannot find the path specified: '/tmp/lit_data'

— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub https://github.com/PAIR-code/lit/issues/13, or unsubscribe https://github.com/notifications/unsubscribe-auth/AAFULXMB4OUW5UTT2FTXOPDSBUTFVANCNFSM4QGCN6KQ .

iftenney commented 4 years ago

Sorry! That path is used to save the predictions cache between runs, but you can disable it with the flag --data-dir="" (see https://github.com/PAIR-code/lit/blob/main/lit_nlp/server_flags.py#L43)

FYI: we haven't tested LIT on Windows at all, so can't guarantee that other issues won't pop up here.

marciowelter commented 4 years ago

It was not easy to install! But it's running. I had to need to downgrade tensorflow to 2.0 because error on load "absl-py" module.

Em sex, 21 de ago de 2020 02:33, Ian Tenney notifications@github.com escreveu:

Sorry! That path is used to save the predictions cache between runs, but you can disable it with the flag --data-dir="" (see https://github.com/PAIR-code/lit/blob/main/lit_nlp/server_flags.py#L43)

FYI: we haven't tested LIT on Windows at all, so can't guarantee that other issues won't pop up here.

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/PAIR-code/lit/issues/13#issuecomment-678047967, or unsubscribe https://github.com/notifications/unsubscribe-auth/AAFULXMTIXVT3ABVFGNQKBTSBYBMLANCNFSM4QGCN6KQ .

salmanahmed1993 commented 4 years ago

Hi There, I have resolved the issue but there is no index file is present...

Kindly resolve the issue

(lit-nlp) C:\~\lit>python -m lit_nlp.examples.quickstart_sst_demo --port=5432 2020-08-24 10:26:15.605109: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 I0824 10:26:15.623712 44212 quickstart_sst_demo.py:47] Working directory: C:\Users\SB0079~1\AppData\Local\Temp\tmp27r8f4_x W0824 10:26:15.864023 44212 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0824 10:26:15.864023 44212 dataset_builder.py:184] Overwrite dataset info from restored data version. I0824 10:26:15.867015 44212 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) I0824 10:26:15.867015 44212 dataset_builder.py:399] Constructing tf.data.Dataset for split train, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 W0824 10:26:15.867015 44212 dataset_builder.py:439] Warning: Setting shuffle_files=True because split=TRAIN and shuffle_files=None. This behavior will be deprecated on 2019-08-06, at which point shuffle_files=False will be the default for all splits. W0824 10:26:23.170175 44212 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0824 10:26:23.171172 44212 dataset_builder.py:184] Overwrite dataset info from restored data version. I0824 10:26:23.174169 44212 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) I0824 10:26:23.174169 44212 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 I0824 10:26:23.292843 44212 tokenization_utils.py:306] Model name 'google/bert_uncased_L-2_H-128_A-2' not found in model shortcut name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). Assuming 'google/bert_uncased_L-2_H-128_A-2' is a path or url to a directory containing tokenizer files. I0824 10:26:23.293861 44212 tokenization_utils.py:317] Didn't find file google/bert_uncased_L-2_H-128_A-2. We won't load it. I0824 10:26:23.294867 44212 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\added_tokens.json. We won't load it. I0824 10:26:23.294867 44212 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\special_tokens_map.json. We won't load it. I0824 10:26:23.294867 44212 tokenization_utils.py:335] Didn't find file google/bert_uncased_L-2_H-128_A-2\tokenizer_config.json. We won't load it. Traceback (most recent call last): File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 60, in app.run(main) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 299, in run _run_main(main, args) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\absl\app.py", line 250, in _run_main sys.exit(main(argv)) File "C:\~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 48, in main run_finetuning(model_path) File "C:\~\lit\lit_nlp\examples\quickstart_sst_demo.py", line 40, in run_finetuning model = glue_models.SST2Model(FLAGS.encoder_name, for_training=True) File "C:\~\lit\lit_nlp\examples\models\glue_models.py", line 319, in init kw) File "C:\~\lit\lit_nlp\examples\models\glue_models.py", line 59, in init model_name_or_path) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_auto.py", line 109, in from_pretrained return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, *kwargs) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 282, in from_pretrained return cls._from_pretrained(inputs, kwargs) File "C:\Users\SB00790107\AppData\Local\Continuum\anaconda3\envs\lit-nlp\lib\site-packages\transformers\tokenization_utils.py", line 346, in _from_pretrained list(cls.vocab_files_names.values()))) OSError: Model name 'google/bert_uncased_L-2_H-128_A-2' was not found in tokenizers model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). We assumed 'google/bert_uncased_L-2_H-128_A-2' was a path or url to a directory containing vocabulary files named ['vocab.txt'] but couldn't find such vocabulary files at this path or url.

(lit-nlp) C:\~\lit>python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432 2020-08-24 10:27:30.452676: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 I0824 10:27:30.974245 20960 tokenization_utils.py:374] loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at C:\Users\SB00790107.cache\torch\transformers\26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084 I0824 10:27:31.431842 20960 configuration_utils.py:151] loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json from cache at C:\Users\SB00790107.cache\torch\transformers\4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517 I0824 10:27:31.432831 20960 configuration_utils.py:168] Model config { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "finetuning_task": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "num_labels": 2, "output_attentions": true, "output_hidden_states": true, "output_past": true, "pad_token_id": 0, "pruned_heads": {}, "torchscript": false, "type_vocab_size": 2, "use_bfloat16": false, "vocab_size": 30522 }

I0824 10:27:31.845113 20960 modeling_tf_utils.py:258] loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5 from cache at C:\Users\SB00790107.cache\torch\transformers\d667df51ec24c20190f01fb4c20a21debc4c4fc12f7e2f5441ac0a99690e3ee9.4733ec82e81d40e9cf5fd04556267d8958fb150e9339390fc64206b7e5a79c83.h5 W0824 10:27:33.815547 20960 dataset_builder.py:575] Found a different version 1.0.0 of dataset glue in data_dir C:\Users\SB00790107\tensorflow_datasets. Using currently defined version 0.0.2. I0824 10:27:33.816513 20960 dataset_builder.py:184] Overwrite dataset info from restored data version. I0824 10:27:33.819529 20960 dataset_builder.py:253] Reusing dataset glue (C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2) I0824 10:27:33.819529 20960 dataset_builder.py:399] Constructing tf.data.Dataset for split validation, from C:\Users\SB00790107\tensorflow_datasets\glue\sst2\0.0.2 I0824 10:27:34.212498 20960 dataset_builder.py:675] No config specified, defaulting to first: imdb_reviews/plain_text I0824 10:27:34.214521 20960 dataset_builder.py:184] Overwrite dataset info from restored data version. I0824 10:27:34.218503 20960 dataset_builder.py:253] Reusing dataset imdb_reviews (C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0) I0824 10:27:34.218503 20960 dataset_builder.py:399] Constructing tf.data.Dataset for split test, from C:\Users\SB00790107\tensorflow_datasets\imdb_reviews\plain_text\0.1.0 I0824 10:27:36.730678 20960 pretrained_lm_demo.py:92] Dataset: 'sst_dev' with 872 examples I0824 10:27:36.731676 20960 pretrained_lm_demo.py:92] Dataset: 'imdb_train' with 25000 examples I0824 10:27:36.732645 20960 pretrained_lm_demo.py:92] Dataset: 'blank' with 0 examples I0824 10:27:36.732645 20960 devserver.py:79] ( ( )\ ) )\ ) * ) (()/((()/(` ) /( /())/())( )()) ()) ()) ((()) | | | || | | | | | | | |__|__| ||

I0824 10:27:36.732645 20960 dev_server.py:80] Starting LIT server... I0824 10:27:36.733643 20960 caching.py:134] CachingModelWrapper 'bert-base-uncased': cache file /tmp/lit_data\bert-base-uncased.cache.pkl does not exist, not loading. I0824 10:27:36.733643 20960 wsgi_serving.py:39]

Starting Server on port 5432 You can navigate to 127.0.0.1:5432

I0824 10:27:36.735637 20960 _internal.py:122] * Running on http://127.0.0.1:5432/ (Press CTRL+C to quit) W0824 10:27:50.120238 20960 wsgi_app.py:57] IOError [Errno 2] No such file or directory: './lit_nlp/client/build/static/index.html' on path ./lit_nlp/client/build/static/index.html I0824 10:27:50.120238 20960 wsgi_app.py:147] path ./lit_nlp/client/build/static/index.html not found, sending 404 I0824 10:27:50.121235 20960 _internal.py:122] 127.0.0.1 - - [24/Aug/2020 10:27:50] "GET / HTTP/1.1" 404 - forrtl: error (200): program aborting due to control-C event Image PC Routine Line Source libifcoremd.dll 00007FFAE0F63B58 Unknown Unknown Unknown KERNELBASE.dll 00007FFB399C5F63 Unknown Unknown Unknown KERNEL32.DLL 00007FFB3B877BD4 Unknown Unknown Unknown ntdll.dll 00007FFB3BC8CE51 Unknown Unknown Unknown

jameswex commented 4 years ago

Have you run the steps to build the front-end? Running the "yarn" and "yarn build" commands in the client directory? And did they succeed?

salmanahmed1993 commented 4 years ago

My Yarn is running but didnt show any interface

(lit-nlp) C:\~\lit>yarn && yarn build yarn install v1.22.4 info No lockfile found. [1/4] Resolving packages... [2/4] Fetching packages... [3/4] Linking dependencies... [4/4] Building fresh packages... success Saved lockfile. Done in 0.07s. yarn run v1.22.4 error Couldn't find a package.json file in "C:\~\lit" info Visit https://yarnpkg.com/en/docs/cli/run for documentation about this command.

iftenney commented 4 years ago

It looks like you're running from the root directory; can you try running yarn from lit_nlp/client?

pedrohesch commented 3 years ago

Hello, I have run python -m lit_nlp.examples.pretrained_lm_demo --models=bert-base-uncased --port=5432 and after navigated to UI, I realized an error message. And for that, I was able to check the following details at the console

I1207 23:10:53.014894 11092 caching.py:226] CachingModelWrapper 'bert-base-uncased': 1000 misses out of 1000 inputs I1207 23:10:53.014894 11092 caching.py:231] Prepared 1000 inputs for model E1207 23:10:53.021873 11092 wsgi_app.py:208] Uncaught error: _batch_encode_plus() got an unexpected keyword argument 'is_pretokenized'

Traceback (most recent call last): File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\wsgi_app.py", line 191, in call return self._ServeCustomHandler(request, clean_path)(environ, File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\wsgi_app.py", line 176, in _ServeCustomHandler return self._handlers[clean_path](self, request) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\app.py", line 75, in _handler outputs = fn(data, *kw) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\app.py", line 239, in _get_interpretations model_outputs = self._predict(data['inputs'], model, dataset_name) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\app.py", line 138, in _predict inputs, dataset_name=dataset_name) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\caching.py", line 203, in predict_with_metadata results = self._predict_with_metadata(args, kw) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\lib\caching.py", line 232, in _predict_with_metadata model_preds = list(self._model.predict_with_metadata(model_inputs)) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\api\model.py", line 190, in results = (scrub_numpy_refs(res) for res in results) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\api\model.py", line 202, in _batched_predict yield from self.predict_minibatch(minibatch, kw) File "D:\lit\lit-nlp\lib\site-packages\lit_nlp\examples\models\pretrained_lms.py", line 102, in predict_minibatch pad_to_max_length=True) File "D:\lit\lit-nlp\lib\site-packages\transformers\tokenization_utils_base.py", line 2519, in batch_encode_plus **kwargs, TypeError: _batch_encode_plus() got an unexpected keyword argument 'is_pretokenized'

iftenney commented 3 years ago

What version of transformers do you have installed? The current LIT demos use transformers==2.11.0 (though we're in the process of updating them), which may have a different call signature to the tokenizers.

pedrohesch commented 3 years ago

What version of transformers do you have installed? The current LIT demos use transformers==2.11.0 (though we're in the process of updating them), which may have a different call signature to the tokenizers.

yes, that is it. I just updated the transformers to 2.11.0 and it is done. Thanks.