PANDA-UFSCar / materiais

Materiais que englobam o currículo básico do PANDA.
0 stars 0 forks source link

Limpeza de dados #11

Open julianafalves opened 3 years ago

pcsv commented 2 years ago

[VIDEO] Daniel Chen: Cleaning and Tidying Data in Pandas

obs: em ingles mas tem legenda

conteúdo: 0:00 Introduction 0:18 Setup: Github Repo, Jupyter Setup 5:35 Loading Datasets - panda.read_csv() 7:43 Dataset / Dataframe At A Glance 7:53 Get First Rows: df.head() 8:58 Get Columns: df.columns 9:15 Get Index: df.index 9:37 Get Body: df.values 10:46 Get Shape: df.shape 12:04 Get Summarizing Statistics: df.info() 13:12 Filtering, Slicing a Dataset / Dataframe 13:25 Extract a Single Column: df['col_name'] 14:12 Dataframe vs Series 14:41 Extract N Columns: df[['col1_name', 'col2_name']] 15:51 Panda's Version: df.version 16:26 Extract Rows: df.iloc 17:30 Extract Rows: df.loc vs df.iloc vs df.idx 18:45 Extract Rows: df.iloc 19:37 Extract Rows: df.ix - Deprecated 20:38 Extract Multiple Rows and Columns 22:00 Extract Rows using Boolean Subsetting 23:24 Extract Rows using Multiple Boolean Subsetting 24:55 Cleaning a Dataset / Dataframe 25:38 General Issues according to a "Tidy Data" Research Paper 29:45 Issue 1: Column Headers are Values and not Variables Names 30:19 Load Pew Dataset 32:55 Transform Columns into Rows: pd.melt() 36:59 Load Billboard Dataset 37:05 Transform Columns into Rows: pd.melt() 42:00 Issue 2: Multiple Variables are Stored in 1 Column 43:06 Load Ebola Dataset 46:22 Transform Columns into Rows: pd.melt() 47:14 Split Column using String Manipulation through Accessors 51:19 Extract Column / Series from Accessor Split: accessor.get() 53:13 Add Column to Dataframe 54:13 Contracted Form for pd.melt() and Accessor String Manipulation: pd.merge() 56:10 Issue 3: Variables Stored in Rows And Columns 56:25 Load Weather Dataset 58:30 Transform Columns into Rows: pd.melt() 1:1:00 Transform Rows into Columns 1:2:00 Transform Rows into Columns: pd.pivot() vs pd.pivot_table() 1:4:30 Transform Rows into Columns: pd.pivot_table() 1:6:19 Flatten nested / hierarchical table: pd.reset_index() 1:7:42 Issue 4: Multiple Types of Observational Unit in Same Table (i.e De-nomalized Table) 1:9:43 Extract Type Observational Unit in new Dataframe, Drop Duplicates 1:11:30 Create "key" for extracted observational unit dataframe 1:12:11 Save new dataframe: pd.to_csv() 1:13:22 Merge / Join dataframe on common columns 1:16:25 Randomly Sample a dataframe 1:17:15 Note on Memory Consumption between all 3 dataframes 01:18:25 Summary from "Tidy Data" Research Paper 01:20:06 Q&A 01:21:21 Q&A 1: Simulating R's Chaining in Python 01:24:49 Q&A 2: Best Practices on Braquet Notation vs Chaining