Closed mrtpk123 closed 2 years ago
What version of tensorflow lite do you have? Models version 2 can't run in tensorflow lite version 1.
Hi @DonkeySmall Thank you for commenting.
I have used TF 2.8. Is there a way to export the pretrained model so that I can run it on TF 2.8?
tflite models of versions 1 and 2 must be run in the tensorflow lite interpreter version 2, tflite models of version 2 will not run in the tensorflow lite interpreter version 1
Apparently the reason is something else
Sorry English is not my native language
import tensorflow as tf
print(f'TF Ver: {tf.__version__}')
interpreter = tf.lite.Interpreter(
model_path='ssd_mobilenet_v3_small_coco_full_integer_quant.tflite',
num_threads=4,
)
interpreter.allocate_tensors()
TF Ver: 2.9.0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
Thank you for your help.
The code I used:
import tensorflow as tf
print(f'TF Ver: {tf.__version__}')
interpreter = tf.lite.Interpreter(model_path='ssd_mobilenet_v3_small_coco_full_integer_quant.tflite',num_threads=4,)
interpreter.allocate_tensors()
print("sucess!!")
System 1:
2022-08-01 11:59:06.584306: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /work/test_cortione/cortione/software/libs:/work/test_cortione/cortione/software/distribute/cortiapps/::/work/demo_test/corti_img_processing/lib
2022-08-01 11:59:06.584344: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
TF Ver: 2.6.2
Aborted (core dumped)
system2:
2022-08-01 17:26:28.951793: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2022-08-01 17:26:28.952062: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
TF Ver: 2.9.1
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
See that the print statement at the end was not executed.
Thank you for looking into this.
docker run --gpus all -it --rm \
-v `pwd`:/home/user/workdir \
ghcr.io/pinto0309/openvino2tensorflow:latest
pb_to_tflite \
--pb_file_path tflite_graph/tflite_graph.pb \
--inputs normalized_input_image_tensor \
--outputs raw_outputs/class_predictions,raw_outputs/box_encodings
import tensorflow as tf
print(f'TF Ver: {tf.__version__}')
interpreter = tf.lite.Interpreter(
model_path='saved_model_from_pb/model_from_pb_float32.tflite',
num_threads=4,
)
interpreter.allocate_tensors()
print("sucess!!")
TF Ver: 2.9.0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
sucess!!
docker run --gpus all -it --rm \
-v `pwd`:/home/user/workdir \
ghcr.io/pinto0309/openvino2tensorflow:latest
pb_to_saved_model \
--pb_file_path tflite_graph/tflite_graph.pb \
--inputs normalized_input_image_tensor:0 \
--outputs raw_outputs/class_predictions:0,raw_outputs/box_encodings:0
saved_model_cli show --dir saved_model_from_pb --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['normalized_input_image_tensor'] tensor_info:
dtype: DT_FLOAT
shape: (1, 320, 320, 3)
name: normalized_input_image_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['raw_outputs/box_encodings'] tensor_info:
dtype: DT_FLOAT
shape: (1, 2034, 4)
name: raw_outputs/box_encodings:0
outputs['raw_outputs/class_predictions'] tensor_info:
dtype: DT_FLOAT
shape: (1, 2034, 91)
name: raw_outputs/class_predictions:0
Method name is: tensorflow/serving/predict
saved_model_to_tflite \
--saved_model_dir_path saved_model_from_pb \
--output_no_quant_float32_tflite \
--output_dynamic_range_quant_tflite \
--output_weight_quant_tflite \
--output_float16_quant_tflite \
--output_integer_quant_tflite \
--output_full_integer_quant_tflite \
--output_integer_quant_type 'uint8' \
--string_formulas_for_normalization 'data / 255.0' \
--output_tfjs \
--output_coreml \
--output_onnx \
--onnx_opset 11 \
--output_edgetpu
import tensorflow as tf
print(f'TF Ver: {tf.__version__}')
interpreter = tf.lite.Interpreter(
model_path='tflite_from_saved_model/model_full_integer_quant.tflite',
num_threads=4,
)
interpreter.allocate_tensors()
print("sucess!!")
TF Ver: 2.9.0
sucess!!
Thank you for your advice and help. Really appreciate it.
Issue Type
Support
OS
Ubuntu
OS architecture
x86_64
Programming Language
Python
Framework
TensorFlowLite
Model name and Weights/Checkpoints URL
Mobilenetv3 small trained on coco - full integer quantized.
https://github.com/PINTO0309/PINTO_model_zoo/blob/main/002_mobilenetv3-ssd/01_mobilenetv3_small/01_coco/04_full_integer_quantization/download.sh
Description
I'm trying to run the fully integer quantized SSD mobilenetv3 (from your model zoo) on tflite and could not load it. I have no clue where to start. If you could direct me on how to debug this, it would be great. Thank you for any help.
Relevant Log Output
URL or source code for simple inference testing code
from tensorflow.lite.python.interpreter import Interpreter interpreter = Interpreter(model_path='ssd_mobilenet_v3_small_coco_full_integer_quant_sp.tflite') interpreter.allocate_tensors()