Closed PCTsai closed 1 year ago
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/227_face-detection-adas-0001
>>> import numpy as np
>>> np.load('0.npy')
array([[[0.9796773, 0.9497039, 0.9965132, ..., 0. , 0. ,
0. ],
[0.1 , 0.1 , 0.2 , ..., 0.1 , 0.2 ,
0.2 ]]], dtype=float32)
>>> np.load('0.npy').shape
(1, 2, 40448)
>>>
Yes, the data dimension in the file 0.npy
is (1, 2, 40448). As I know is that it consists of 10112 prior bboxes and 10112 corresponding prior variances (always [0.1, 0.1, 0.2, 0.2]). After squeezing and reshaping the loaded data as shown in the below code, it is clear to see that data in prior bboxes is almost empty (10105 zero prior bboxes), that means the decoded bboxes will be also empty and face detection will fail. However, 0.npy
in 179_person-detection-0202 is not empty and works well.
>>> import numpy as np
>>> np.load("0.npy")
array([[[0.9796773, 0.9497039, 0.9965132, ..., 0. , 0. ,
0. ],
[0.1 , 0.1 , 0.2 , ..., 0.1 , 0.2 ,
0.2 ]]], dtype=float32)
>>> np.load("0.npy").shape
(1, 2, 40448)
>>> prior_bbox_data = np.squeeze(np.load("0.npy"))
>>> prior_bbox_data
array([[0.9796773, 0.9497039, 0.9965132, ..., 0. , 0. ,
0. ],
[0.1 , 0.1 , 0.2 , ..., 0.1 , 0.2 ,
0.2 ]], dtype=float32)
>>> prior_bbox_data.shape
(2, 40448)
>>> prior_bbox_data_reshape = np.reshape(prior_bbox_data, (2, -1, 4))
>>> prior_bbox_data_reshape
array([[[0.9796773, 0.9497039, 0.9965132, 1.0086294],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
...,
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ]],
[[0.1 , 0.1 , 0.2 , 0.2 ],
[0.1 , 0.1 , 0.2 , 0.2 ],
[0.1 , 0.1 , 0.2 , 0.2 ],
...,
[0.1 , 0.1 , 0.2 , 0.2 ],
[0.1 , 0.1 , 0.2 , 0.2 ],
[0.1 , 0.1 , 0.2 , 0.2 ]]], dtype=float32)
>>> prior_bbox_data_reshape.shape
(2, 10112, 4)
>>> prior_bbox = prior_bbox_data_reshape[0]
>>> prior_bbox
array([[0.9796773, 0.9497039, 0.9965132, 1.0086294],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
...,
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ]], dtype=float32)
>>> prior_varience = prior_bbox_data_reshape[1]
>>> prior_varience
array([[0.1, 0.1, 0.2, 0.2],
[0.1, 0.1, 0.2, 0.2],
[0.1, 0.1, 0.2, 0.2],
...,
[0.1, 0.1, 0.2, 0.2],
[0.1, 0.1, 0.2, 0.2],
[0.1, 0.1, 0.2, 0.2]], dtype=float32)
>>>
The model is too old to retrieve the original file.
I recommend the use of the following https://github.com/PINTO0309/PINTO_model_zoo/tree/main/383_DirectMHP
https://github.com/PINTO0309/PINTO_model_zoo/assets/33194443/1c125faa-b2c3-4acc-a4c5-d1fc2e2b47a3
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/407_Generalizing_Gaze_Estimation
https://github.com/PINTO0309/PINTO_model_zoo/assets/33194443/2da9849a-944d-4bc1-a975-f4cf1bcfc398
Issue Type
Support
OS
Ubuntu
OS architecture
x86_64
Programming Language
Python
Framework
TensorFlowLite
Model name and Weights/Checkpoints URL
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/227_face-detection-adas-0001
Description
Hi PINTO, I'm trying to run the face detection model followed by the issue response and the sample code. The output bboxes seem ok but the corresponding prior bboxes is always zero (i.e. [0,0,0,0]) which causes zero decoded bbox for the final result. I had checked the prior bboxes loaded from
0.npy
where totally number is 10112 and found 10105 zero bboxes. Is this prior bboxes file0.npy
correct for this model?Relevant Log Output
No response
URL or source code for simple inference testing code
No response