A repository for storing models that have been inter-converted between various frameworks. Supported frameworks are TensorFlow, PyTorch, ONNX, OpenVINO, TFJS, TFTRT, TensorFlowLite (Float32/16/INT8), EdgeTPU, CoreML.
10. URL or source code for simple inference testing code
import numpy as np
import cv2
import tensorflow as tf
model_path = './PINTO_model_zoo/053_BlazePose/03_pose_landmark_full_body/saved_model_tflite_tfjs_coreml_onnx'
test_image_path = './mpii/images/000005283.jpg'
_img = cv2.imread(test_image_path, -1)
_img = cv2.cvtColor(_img, cv2.COLOR_BGR2RGB)
img = cv2.resize(_img, (256, 256))
model = tf.keras.models.load_model(model_path)
sig = model.signatures['serving_default']
x = np.float32(np.expand_dims(img, 0)) / 255.
output = sig(tf.constant(x))['ld_3d'].numpy().squeeze()
key_points = []
for x, y in zip(output[::5], output[1::5]):
print(f'{x}, {y}')
key_points.append((int(x / 255. * _img.shape[1]), int(y / 255. * _img.shape[0])))
for i in range(33):
cv2.circle(_img, center=key_points[i], radius=2, color=(0, 255, 0), thickness=2)
cv2.imshow("test", _img)
cv2.waitKey(0)
11. Issue Details
Detected landmarks are inaccurate when attempting to predict on the aforementioned test image and the full body SavedModel (PINTO_model_zoo/053_BlazePose/03_pose_landmark_full_body/saved_model_tflite_tfjs_coreml_onnx) model. I get similar results with the equivalent TensorFlow Lite models.
I'm not sure if I'm missing something in my test script, but it is the result of what i was able to gather based on examples found here and in the MediaPipe sources.
1. OS you are using e.g. Ubuntu 20.04, WIndows10, etc
Fedora 28
2. OS Architecture e.g. x86_64, armv7l, aarch64, etc
x86_64
3. Version of OpenVINO e.g. 2021.2.185, etc
4. Version of TensorFlow e.g. v2.4.1, tf-nightly==2.5.0.dev20210128, etc
v2.3.1
5. Version of TensorRT e.g. TensorRT6.0 GA, etc
6. Version of TFJS e.g. 1.5.0, etc
7. Version of coremltools e.g. 4.0, etc
8. Version of ONNX e.g. v1.8.0, etc
9. URL of the repository from which the transformed model was taken
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/053_BlazePose/03_pose_landmark_full_body
10. URL or source code for simple inference testing code
11. Issue Details
Detected landmarks are inaccurate when attempting to predict on the aforementioned test image and the full body SavedModel (PINTO_model_zoo/053_BlazePose/03_pose_landmark_full_body/saved_model_tflite_tfjs_coreml_onnx) model. I get similar results with the equivalent TensorFlow Lite models.
I'm not sure if I'm missing something in my test script, but it is the result of what i was able to gather based on examples found here and in the MediaPipe sources.
Test image:
Landmarks detected using test script:
Landmarks detected using MediaPipe's python api: