Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf). I don't need a Star, but give me a pull request.
MIT License
706
stars
73
forks
source link
Improved handling when `axis` attribute is not defined and the batch size of the first dimension is undefined. #692
The given SavedModel SignatureDef contains the following input(s):
inputs['data'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 224, 224, 3)
name: serving_default_data:0
The given SavedModel SignatureDef contains the following output(s):
outputs['output_0'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1000)
name: PartitionedCall:0
Method name is: tensorflow/serving/predict
1. Content and background
Flatten
axis
attribute is not defined and the batch size of the first dimension is undefined.ls -lh saved_model/
assets fingerprint.pb resnet18-v1-7_float16.tflite resnet18-v1-7_float32.tflite saved_model.pb variables
TF_CPP_MIN_LOG_LEVEL=3 \ saved_model_cli show \ --dir saved_model \ --signature_def serving_default \ --tag_set serve
The given SavedModel SignatureDef contains the following input(s): inputs['data'] tensor_info: dtype: DT_FLOAT shape: (-1, 224, 224, 3) name: serving_default_data:0 The given SavedModel SignatureDef contains the following output(s): outputs['output_0'] tensor_info: dtype: DT_FLOAT shape: (-1, 1000) name: PartitionedCall:0 Method name is: tensorflow/serving/predict
2. Summary of corrections
3. Before/After (If there is an operating log that can be used as a reference)
4. Issue number (only if there is a related issue)