Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite, ONNX, OpenVINO, Myriad Inference Engine blob and .pb from .tflite. Support for building environments with Docker. It is possible to directly access the host PC GUI and the camera to verify the operation. NVIDIA GPU (dGPU) support. Intel iHD GPU (iGPU) support. Supports inverse quantization of INT8 quantization model.
I was trying to convert the saved_model or tflite model format into Keras model. The magenta_arbitrary-image-stylization-v1-256_fp16_prediction_1.tflite was good with your great help.
I got error again while trying magenta_arbitrary-image-stylization-v1-256_fp16_transfer_1.tflite by following the similar steps.
Would you please help check it?
Thank you so much!
Relevant Log Output
Error log for openvino2tensorflow --model_path saved_model/openvino/FP32/saved_model.xml --output_h5
====================================================================================
layer_type: Sigmoid
layer_id: 473
input_layer0: layer_id=472: KerasTensor(type_spec=TensorSpec(shape=(1, 384, 384, 3), dtype=tf.float32, name=None), name='tf.math.add_72/Add:0', description="created by layer 'tf.math.add_72'")
tf_layers_dict: KerasTensor(type_spec=TensorSpec(shape=(1, 384, 384, 3), dtype=tf.float32, name=None), name='tf.math.sigmoid/Sigmoid:0', description="created by layer 'tf.math.sigmoid'")
====================================================================================
layer_type: Result
layer_id: 474
input_layer0: layer_id=473: KerasTensor(type_spec=TensorSpec(shape=(1, 384, 384, 3), dtype=tf.float32, name=None), name='tf.math.sigmoid/Sigmoid:0', description="created by layer 'tf.math.sigmoid'")
tf_layers_dict: KerasTensor(type_spec=TensorSpec(shape=(1, 384, 384, 3), dtype=tf.float32, name=None), name='tf.identity/Identity:0', description="created by layer 'tf.identity'")
====================================================================================
TensorFlow/Keras model building process complete!
.h5 output started ==================================================================
ERROR: cannot pickle 'module' object
Traceback (most recent call last):
File "/usr/local/bin/openvino2tensorflow", line 7022, in convert
model.save(f'{model_output_path}/model_float32.h5', include_optimizer=False, save_format='h5')
File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/usr/lib/python3.8/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.8/copy.py", line 230, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.8/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.8/copy.py", line 205, in _deepcopy_list
append(deepcopy(a, memo))
File "/usr/lib/python3.8/copy.py", line 172, in deepcopy
y = _reconstruct(x, memo, *rv)
File "/usr/lib/python3.8/copy.py", line 296, in _reconstruct
value = deepcopy(value, memo)
File "/usr/lib/python3.8/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.8/copy.py", line 230, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/usr/lib/python3.8/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.8/copy.py", line 210, in _deepcopy_tuple
y = [deepcopy(a, memo) for a in x]
File "/usr/lib/python3.8/copy.py", line 210, in <listcomp>
y = [deepcopy(a, memo) for a in x]
File "/usr/lib/python3.8/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/usr/lib/python3.8/copy.py", line 210, in _deepcopy_tuple
y = [deepcopy(a, memo) for a in x]
File "/usr/lib/python3.8/copy.py", line 210, in <listcomp>
y = [deepcopy(a, memo) for a in x]
File "/usr/lib/python3.8/copy.py", line 161, in deepcopy
rv = reductor(4)
TypeError: cannot pickle 'module' object
All the conversion process is finished! =============================================
Issue Type
Bug
OS
Ubuntu
OS architecture
x86_64
Programming Language
Python
Framework
TensorFlow
Download URL for tflite file
https://tfhub.dev/google/lite-model/magenta/arbitrary-image-stylization-v1-256/fp16/transfer/1
Convert Script
sudo docker run -it --rm \ -v
pwd
:/home/user/workdir \ ghcr.io/pinto0309/tflite2tensorflow:latesttflite2tensorflow --model_path ./magenta_arbitrary-image-stylization-v1-256_fp16_transfer_1.tflite --flatc_path ../flatc --schema_path ../schema.fbs --output_no_quant_float32_tflite --output_dynamic_range_quant_tflite --output_weight_quant_tflite --output_float16_quant_tflite --output_integer_quant_tflite --string_formulas_for_normalization 'data / 255.0' --output_tfjs --output_coreml --output_onnx --onnx_opset 11 --output_openvino_and_myriad
openvino2tensorflow --model_path saved_model/openvino/FP32/saved_model.xml --output_h5
Description
I was trying to convert the saved_model or tflite model format into Keras model. The magenta_arbitrary-image-stylization-v1-256_fp16_prediction_1.tflite was good with your great help.
I got error again while trying magenta_arbitrary-image-stylization-v1-256_fp16_transfer_1.tflite by following the similar steps. Would you please help check it?
Thank you so much!
Relevant Log Output
Source code for simple inference testing code
No response