Closed prinshul closed 10 months ago
Hi. You can try the following hyperparameters.
{
"algo_args": {
"algo": {
"action_aggregation": "prod",
"actor_num_mini_batch": 2,
"clip_param": 0.05,
"critic_epoch": 5,
"critic_num_mini_batch": 2,
"entropy_coef": 0,
"fixed_order": true,
"gae_lambda": 0.95,
"gamma": 0.99,
"huber_delta": 10.0,
"max_grad_norm": 10.0,
"ppo_epoch": 5,
"share_param": true,
"use_clipped_value_loss": true,
"use_gae": true,
"use_huber_loss": true,
"use_max_grad_norm": true,
"use_policy_active_masks": true,
"value_loss_coef": 1
},
"device": {
"cuda": true,
"cuda_deterministic": true,
"torch_threads": 4
},
"eval": {
"eval_episodes": 20,
"n_eval_rollout_threads": 10,
"use_eval": true
},
"logger": {
"log_dir": "./results"
},
"model": {
"activation_func": "relu",
"critic_lr": 0.0005,
"data_chunk_length": 10,
"gain": 0.01,
"hidden_sizes": [
256,
256
],
"initialization_method": "orthogonal_",
"lr": 0.0005,
"opti_eps": 1e-05,
"recurrent_n": 1,
"std_x_coef": 1,
"std_y_coef": 0.5,
"use_feature_normalization": true,
"use_naive_recurrent_policy": false,
"use_recurrent_policy": false,
"weight_decay": 0
},
"render": {
"render_episodes": 10,
"use_render": false
},
"seed": {
"seed": 0,
"seed_specify": true
},
"train": {
"episode_length": 1000,
"eval_interval": 25,
"log_interval": 5,
"model_dir": null,
"n_rollout_threads": 20,
"num_env_steps": 10000000,
"use_linear_lr_decay": false,
"use_proper_time_limits": true,
"use_valuenorm": true
}
},
"env_args": {
"scenario": "MultipleCombat",
"task": "2v2/NoWeapon/vsBaseline"
},
"main_args": {
"algo": "mappo",
"env": "lag",
"exp_name": "test",
"load_config": ""
}
}
{
"algo_args": {
"algo": {
"action_aggregation": "prod",
"actor_num_mini_batch": 2,
"clip_param": 0.05,
"critic_epoch": 5,
"critic_num_mini_batch": 2,
"entropy_coef": 0,
"fixed_order": false,
"gae_lambda": 0.95,
"gamma": 0.99,
"huber_delta": 10.0,
"max_grad_norm": 10.0,
"ppo_epoch": 5,
"share_param": false,
"use_clipped_value_loss": true,
"use_gae": true,
"use_huber_loss": true,
"use_max_grad_norm": true,
"use_policy_active_masks": true,
"value_loss_coef": 1
},
"device": {
"cuda": true,
"cuda_deterministic": true,
"torch_threads": 4
},
"eval": {
"eval_episodes": 20,
"n_eval_rollout_threads": 10,
"use_eval": true
},
"logger": {
"log_dir": "./results"
},
"model": {
"activation_func": "relu",
"critic_lr": 0.0005,
"data_chunk_length": 10,
"gain": 0.01,
"hidden_sizes": [
256,
256
],
"initialization_method": "orthogonal_",
"lr": 0.0005,
"opti_eps": 1e-05,
"recurrent_n": 1,
"std_x_coef": 1,
"std_y_coef": 0.5,
"use_feature_normalization": true,
"use_naive_recurrent_policy": false,
"use_recurrent_policy": false,
"weight_decay": 0
},
"render": {
"render_episodes": 10,
"use_render": false
},
"seed": {
"seed": 0,
"seed_specify": true
},
"train": {
"episode_length": 1000,
"eval_interval": 25,
"log_interval": 5,
"model_dir": null,
"n_rollout_threads": 20,
"num_env_steps": 10000000,
"use_linear_lr_decay": false,
"use_proper_time_limits": true,
"use_valuenorm": true
}
},
"env_args": {
"scenario": "MultipleCombat",
"task": "2v2/NoWeapon/vsBaseline"
},
"main_args": {
"algo": "happo",
"env": "lag",
"exp_name": "test",
"load_config": ""
}
}
Thank you.
Will the 2v2 Shootmissile hyperparameters for mappo and happo be similar?
Yep. It should be similar.
Thank you.
Hi
I ran LAG with MAPPO & HAPPO but the eval plot is looking weird. Can you please share the LAG hyperparameters for MAPPO & HAPPO? This is regarding fig. 10(c) in the paper: MAXIMUM ENTROPY HETEROGENEOUS-AGENT REINFORCEMENT LEARNING
Thanks.