Open PaPaPaPatrick opened 1 year ago
https://zhuanlan.zhihu.com/p/348800083
这个主干网络大多时候指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络经常使用的是resnet VGG等,而不是我们自己设计的网络,因为这些网络已经证明了在分类等问题上的特征提取能力是很强的。在用这些网络作为backbone的时候,都是直接加载官方已经训练好的模型参数,后面接着我们自己的网络。让网络的这两个部分同时进行训练,因为加载的backbone模型已经具有提取特征的能力了,在我们的训练过程中,会对他进行微调,使得其更适合于我们自己的任务。
head:head是获取网络输出内容的网络,利用之前提取的特征,head利用这些特征,做出预测。 ———————————————— 版权声明:本文为CSDN博主「Tchunren」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/t20134297/article/details/105745566
深度学习backbone、neck 和 head介绍 https://zhuanlan.zhihu.com/p/607578342
https://zhuanlan.zhihu.com/p/348800083
这个主干网络大多时候指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络经常使用的是resnet VGG等,而不是我们自己设计的网络,因为这些网络已经证明了在分类等问题上的特征提取能力是很强的。在用这些网络作为backbone的时候,都是直接加载官方已经训练好的模型参数,后面接着我们自己的网络。让网络的这两个部分同时进行训练,因为加载的backbone模型已经具有提取特征的能力了,在我们的训练过程中,会对他进行微调,使得其更适合于我们自己的任务。
head:head是获取网络输出内容的网络,利用之前提取的特征,head利用这些特征,做出预测。 ———————————————— 版权声明:本文为CSDN博主「Tchunren」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/t20134297/article/details/105745566