⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
示例的图片,12.jpg可以正常运行,但是自测了一张文档,报错rec模型和cls模型batch_size太小。之后将两个模型的batch_size调整成256之后,报显存太小,因此之后对det模型的后处理进行调整,将det_box切割成batch_size=5去预测,发现预测的速度非常慢,一张普通图片的时间要5s,显卡配置为rtx3090ti,请问下想提高性能怎么解决?
修改之后的/data/FastDeploy-develop/examples/vision/ocr/PP-OCRv3/serving/models/det_postprocess/1/model.py内容,从228行之后如下:
下面为对box拆分为小batch预测的代码: