⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
FastDeploy 服务化部署中提到的PaddleDetection、PaddleClas等使用的是Model Ensembles方案,PaddleSpeech/PP-TTS和PaddleNLP/UIE使用是python backend方案。
请问:
models/runtime
模型使用的backend是fastdeploy。那么,直接使用fastdeploy_backend相较于triton-inference-server/backend提到的backend(比如paddlepaddle_backend或onnxruntime_backend,同样支持TRT、CUDA、CPU、OpenVINO)有那些好处?