PaddlePaddle / FastDeploy

⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
https://www.paddlepaddle.org.cn/fastdeploy
Apache License 2.0
2.97k stars 462 forks source link

Fastdeploy下使用ppvehicle的模型推理汽车的属性分类出现bug #2423

Open hunagjingwei opened 7 months ago

hunagjingwei commented 7 months ago

环境

rainyfly commented 6 months ago

看起来是模型的输入不对,你检查一下放入模型的输入是否符合预期,看报错你输入的shape是1.765.1360.3 ?

hunagjingwei commented 6 months ago

看起来是模型的输入不对,你检查一下放入模型的输入是否符合预期,看报错你输入的shape是1.765.1360.3 ?

std::string att_model_file = "/home/V01/uids0382/projects/CarDetDemo/vehicle_attribute_model/model.pdmodel"; std::string att_params_file = "/home/V01/uids0382/projects/CarDetDemo/vehicle_attribute_model/model.pdiparams"; std::string att_infer_cfg_file = "/home/V01/uids0382/projects/CarDetDemo/vehicle_attribute_model/infer_cfg.yml"; auto att_model = fastdeploy::vision::classification::PaddleClasModel(att_model_file, att_params_file, att_infer_cfg_file); fastdeploy::vision::ClassifyResult result; obj.convertTo(obj,CV_32F);//obj是Mat 图像 assert(att_model.Predict(&obj, &result));

直接用fastdeploy定义推理接口,好像不需要定义输入图像的大小吧,直接使用Predict进行推理就行了吧

hunagjingwei commented 6 months ago

问题已已解决,使用paddleclas项目下 ./deploy/configs/inference_cls.yaml替代https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.7/deploy/pipeline/docs/tutorials/ppvehicle_attribute.md下载的车辆属性yml文件即可解决。