PaddlePaddle / Paddle

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
http://www.paddlepaddle.org/
Apache License 2.0
22.26k stars 5.6k forks source link

2465 Segmentation fault (core dumped) 小batch_size可以成功run,大一点batch_size(8以上)就报Segmentation fault #25236

Closed zyyhub closed 4 years ago

zyyhub commented 4 years ago
LielinJiang commented 4 years ago

本地看一下,是否是超内存了

xjqbest commented 4 years ago

报错代码如下:

from __future__ import print_function

import os
#import sys
import argparse
from PIL import Image
import numpy as np
import paddle
import paddle.fluid as fluid
import io
import math
#import paddlecloud.visual_util as visualdl
#import paddlecloud.model_util as model_util
#mu = model_util.ModelUtil()

img_emb_path = "./thirdparty/total_images_emb"
title_emb_path = "./thirdparty/total_titles_emb"
entity_emb_path = "./thirdparty/total_entitys_emb"
train_mapfile = "./train_data"
val_mapfile = "./test_data"
save_dirname = "./output/model/"

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--cpu_num', type=str, default='1', help="train cpu number")
    parser.add_argument('--num_epochs', type=int, default=3, help="number of epochs")
    parser.add_argument('--use_parallel_exe', type=int, default=0, help="if use parallel_executor")
    args = parser.parse_args()
    return args

def data_reader(mapfile, img_emb_path, title_emb_path, entity_emb_path):
    def reader():
        files = os.listdir(mapfile)
        for fi in files:
            with io.open(mapfile + '/' + fi, 'r', encoding='utf-8') as fr:
                for line in fr:
                    cols = line.strip().split('\t')
                    if len(cols) != 9:
                        continue
                    ideaid, imgname, img_num, titleid, mt_idx, trade1_idx, trade2_idx, entity_idx, label = cols
                    imgname_list = imgname.strip().split('#')
                    if len(imgname_list) == 1:
                        img_emb1 = np.loadtxt(os.path.join(img_emb_path, imgname + '.jpg.txt'))
                        img_emb2 = np.loadtxt(os.path.join(img_emb_path, imgname + '.jpg.txt'))
                        img_emb3 = np.loadtxt(os.path.join(img_emb_path, imgname + '.jpg.txt'))
                    elif len(imgname_list) == 3:
                        img_emb1 = np.loadtxt(os.path.join(img_emb_path, imgname_list[0] + '.jpg.txt'))
                        img_emb2 = np.loadtxt(os.path.join(img_emb_path, imgname_list[1] + '.jpg.txt'))
                        img_emb3 = np.loadtxt(os.path.join(img_emb_path, imgname_list[2] + '.jpg.txt'))
                    else:
                        continue
                    titleid = titleid + '.txt'
                    entity_idx = entity_idx + '.txt'
                    title_emb = np.loadtxt(os.path.join(title_emb_path, titleid))
                    entity_emb = np.loadtxt(os.path.join(entity_emb_path, entity_idx))
                    fea_vec = np.concatenate((img_emb1, img_emb2, img_emb3, title_emb, entity_emb), axis = 0)
                    # print(len(fea_vec), img_num, mt_idx, trade1_idx, trade2_idx, label)
                    yield fea_vec, int(img_num), int(mt_idx), int(trade1_idx), int(trade2_idx), int(label)
    return reader

def nccl2_prepare(main_prog, startup_prog):
    """
    prepare nccl2
    """
    port = os.getenv("PADDLE_PORT", "6174")
    trainer_ips = os.getenv("PADDLE_TRAINERS")
    eplist = []
    for ip in trainer_ips.split(","):
        eplist.append(':'.join([ip, port]))
    trainer_endpoints = ",".join(eplist)  # ip:port,ip:port...
    current_endpoint = os.getenv("POD_IP") + ":" + port

    config = fluid.DistributeTranspilerConfig()
    config.mode = "nccl2"
    t = fluid.DistributeTranspiler(config=config)

    t.transpile(
        int(os.getenv("PADDLE_TRAINER_ID", "0")),
        trainers=trainer_endpoints,
        current_endpoint=current_endpoint,
        startup_program=startup_prog,
        program=main_prog)

def pserver_prepare(train_prog, startup_prog):
    """
    prepare pserver
    """
    port = os.getenv("PADDLE_PORT", "6174")
    trainer_ips = os.getenv("PADDLE_PSERVERS")
    eplist = []
    for ip in trainer_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
    current_endpoint = os.getenv("POD_IP") + ":" + port
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")

    config = fluid.DistributeTranspilerConfig()
    config.slice_var_up = False
    t = fluid.DistributeTranspiler(config=config)

    t.transpile(
        int(os.getenv("PADDLE_TRAINER_ID", "0")),
        program=train_prog,
        pservers=pserver_endpoints,
        trainers=int(os.getenv("PADDLE_TRAINERS_NUM", "0")),
        startup_program=startup_prog)

    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(current_endpoint)
        pserver_startup_program = t.get_startup_program(
            current_endpoint,
            pserver_program,
            startup_program=startup_prog)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, startup_prog
    else:
        raise ValueError('TRAINING_ROLE environment variable must be either TRAINER or PSERVER')

def run_pserver(train_prog, startup_prog):
    """
    run pserver
    """
    server_exe = fluid.Executor(fluid.CPUPlace())
    server_exe.run(startup_prog)
    server_exe.run(train_prog)

def bceloss(predict, label):
    softmax_vec = fluid.layers.concat([fluid.layers.elementwise_sub(fluid.layers.fill_constant_batch_size_like(predict, [-1, 1], 'float64', 1), predict), predict], axis=1) 
    return softmax_vec

def loss_net(predict, label):
    softmax_vec = bceloss(predict=predict, label=label)
    loss = fluid.layers.cross_entropy(input=softmax_vec, label=label)
    avg_loss = fluid.layers.mean(loss)
    return predict, avg_loss

def multilayer_perceptron(concat_emb, label):
    fc1 = fluid.layers.fc(input=concat_emb, size=1024, act='relu')
    fc2 = fluid.layers.fc(input=fc1, size=512, act='relu')
    predict = fluid.layers.fc(input=fc2, size=1, act='sigmoid')
    return loss_net(predict, label)

def train(is_local,
        training_role,
        pserver_endpoints,
        current_endpoint,
        trainer_num,
        trainer_id,
        use_parallel_executor=False,
        use_cuda=False, is_sparse=True):
    print('train start...')
    #define net
    fea_vec = fluid.data(name='fea_vec', shape=[None, 3256], dtype='float64')
    img_num = fluid.data(name='img_num', shape=[None, 1], dtype='float64')
    mt_idx = fluid.data(name='mt_idx', shape=[None, 1], dtype='int64')
    trade1_idx = fluid.data(name='trade1_idx', shape=[None, 1], dtype='int64')
    trade2_idx = fluid.data(name='trade2_idx', shape=[None, 1], dtype='int64')

    mt_emb = fluid.embedding(input=mt_idx, size=[11, 8], dtype='float64')
    trade1_emb = fluid.embedding(input=trade1_idx, size=[32, 8], dtype='float64')
    trade2_emb = fluid.embedding(input=trade2_idx, size=[223, 16], dtype='float64')
    concat_emb = fluid.layers.concat(input=[fea_vec, img_num, mt_emb, trade1_emb, trade2_emb], axis = 1)

    net_conf = multilayer_perceptron
    label = fluid.data(name='label', shape=[None, 1], dtype='int64')
    predict, avg_loss = net_conf(concat_emb, label)

    optimizer = fluid.optimizer.Adam(learning_rate=0.00001)
    optimizer.minimize(avg_loss)

    #train_reader = paddle.batch(reader = paddle.reader.shuffle(reader=data_reader(train_mapfile, img_emb_path, title_emb_path, entity_emb_path), buf_size=8), batch_size=4)
    train_reader = paddle.batch(reader = data_reader(train_mapfile, img_emb_path, title_emb_path, entity_emb_path), batch_size=20)
    val_reader = paddle.batch(reader=data_reader(val_mapfile, img_emb_path, title_emb_path, entity_emb_path), batch_size=20)

    #define exe
    startup_program = fluid.default_startup_program()
    main_program = fluid.default_main_program()
    val_program = main_program.clone(for_test=True)
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    startup_exe = fluid.Executor(place)

    def val_test(val_program, val_feed, val_reader):
        #avg_loss_list = np.array([])
        #predict_result = []
        accum_loss = 0.0
        batch_num = 0
        for val_data in val_reader():
            avg_loss_np = exe.run(feed=val_feed.feed(val_data), fetch_list=[avg_loss])
            batch_num += len(avg_loss_np[0])
            accum_loss += sum(avg_loss_np[0])
            #print(avg_loss_np, batch_num, accum_loss)    
        avg_loss_val_mean = accum_loss / batch_num
        return avg_loss_val_mean

    def train_loop():
        feeder = fluid.DataFeeder(feed_list=[fea_vec, img_num, mt_idx, trade1_idx, trade2_idx, label], place=place)
        epochs = [epoch_id for epoch_id in range(EPOCH_NUM)]
        lists = []
        batch = 0
        print('epoch start...')
        for epoch_id in epochs:
            for batch_id, data in enumerate(train_reader()):
                #print("epoch_id:", epoch_id, "batch_id:", batch_id)
                #print("batch data:", feeder.feed(data[:2]))
                #metrics = exe.run(main_program, feed=feeder.feed(data[:2]), fetch_list=[avg_loss])
                metrics = exe.run(feed=feeder.feed(data), fetch_list=[avg_loss])
                if batch_id % 5 == 0:
                    print(metrics)
                    if use_parallel_executor:
                        print("Batch %d, Epoch %d, Parallel Cost %f" % (batch_id, epoch_id, np.mean(metrics[0])))
                    else:
                        print("Batch %d, Epoch %d, Cost %f" % (batch_id, epoch_id, metrics[0]))
            avg_loss_val = val_test(val_program=val_program, val_feed=feeder, val_reader=val_reader)

            print("Val with Epoch %d, avg_cost: %s" % (epoch_id, avg_loss_val))
            lists.append((epoch_id, avg_loss_val))
            if save_dirname is not None:
                #fluid.io.save_inference_model(save_dirname + '/model.' + str(epoch_id), ['fea_vec', 'img_num', 'mt_idx', 'trade1_idx', 'trade2_idx'], \
                #        [predict], startup_exe, model_filename=None, params_filename=None)
                fluid.io.save_inference_model(save_dirname + '/model.' + str(epoch_id), [], [predict], startup_exe, model_filename=None, params_filename=None)

        # find the best pass
        best = sorted(lists, key=lambda list: float(list[1]))[0]
        print('Best epoch is %s, var Avgcost is %s' % (best[0], best[1]))
        if not is_local and os.getenv("DISTRIBUTE_JOB_TYPE") == "PSERVER":
            startup_exe.close()
    if is_local:
        print("is_local")
        startup_exe.run(startup_program)
        if use_parallel_executor: 
            exe = fluid.ParallelExecutor(use_cuda=use_cuda, loss_name=avg_loss.name, main_program=main_program)
        else:
            print("not parallel")
            exe = startup_exe
        train_loop()
    elif "NCCL2" == os.getenv("DISTRIBUTE_JOB_TYPE"):
        nccl2_prepare(main_program, startup_program)
        startup_exe.run(startup_program)
        strategy = fluid.ExecutionStrategy()
        strategy.num_threads = 1
        strategy.allow_op_delay = False
        exe = fluid.ParallelExecutor(use_cuda=use_cuda, loss_name=avg_loss.name, exec_strategy=strategy, main_program=main_program, 
            num_trainers=int(os.getenv("PADDLE_TRAINERS_NUM", "0")), trainer_id=int(os.getenv("PADDLE_TRAINER_ID", "0")))
        train_loop()
    elif "PSERVER" == os.getenv("DISTRIBUTE_JOB_TYPE"):
        print("pserver...")
        main_program, startup_program = pserver_prepare(main_program, startup_program)
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        if training_role == "PSERVER":
            print("run_pserver...")
            run_pserver(main_program, startup_program)
        elif training_role == "TRAINER":
            print("trainer...")
            startup_exe.run(startup_program)
            exe = fluid.ParallelExecutor(use_cuda=use_cuda, loss_name=avg_loss.name, main_program=main_program)
            train_loop()
    else:
        raise ValueError('DISTRIBUTE_JOB_TYPE environment variable must be either NCCL2 or PSERVER')

if __name__ == '__main__':
    print('start...')
    port = os.getenv("PADDLE_PORT", "6174")
    pserver_ips = os.getenv("PADDLE_PSERVERS", "")
    eplist = []
    for ip in pserver_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)
    trainer_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
    current_endpoint = os.getenv("POD_IP", "localhost") + ":" + port
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")
    is_local = bool(int(os.getenv("PADDLE_IS_LOCAL", 0)))
    #is_local = True
    print("is_local:", is_local)

    args = parse_args()
    os.environ['CPU_NUM'] = args.cpu_num

    EPOCH_NUM = args.num_epochs
    train(is_local=is_local,
        training_role=training_role,
        pserver_endpoints=pserver_endpoints,
        current_endpoint=current_endpoint,
        trainer_num=trainer_num,
        trainer_id=trainer_id,
        use_parallel_executor=bool(args.use_parallel_exe))
zhiqiu commented 4 years ago

经线下与用户沟通和排查,定位到问题是用户的concat使用了不同rank的tensor输入,log如下:

CPUPlace Op(concat), inputs:{AxisTensor[], X[fea_vec:double16, 3256, img_num:double16, 1, embedding_0.tmp_0:double16, 1, 8, embedding_1.tmp_0:double16, 1, 8, embedding_2.tmp_0:double16, 1, 16]}, outputs:{Out[concat_0.tmp_0:double16, 3260]}.

在CPU设备上执行时,由于kernel函数未进行检查,最后导致buddy_allocator越界了。

p.s. PyTorch在处理concat的输入是不同rank情况时,会直接报错,Paddle也应该加强一下。

image

zyyhub commented 4 years ago

感谢,问题解决了。