Closed zsbjmy closed 2 years ago
@zsbjmy good job. 欢迎提交PR
您好,请问我这样修改是有效的吗?我的logger.info("进入ChannelA")在notebook中没有打印出来,是不是说明没有进入到我添加的 ChannelAttention(nn.Layer)函数中?
这种写法是无效的,所有的模块都需要在init函数中初始化,另外SpitialAttention的结构好像也有点问题,这个模块的输出channel直接变成1了,我理解你现在实现的SpitialAttention的输出只是注意力分数
我在PaddleDetection/ppdet/modeling/necks/yolo_fpn.py 这个文件中直接加入了ChannelAttention(nn.Layer)这个函数,
import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from ppdet.core.workspace import register, serializable from ..backbones.darknet import ConvBNLayer import numpy as np
from ..shape_spec import ShapeSpec
from .logger import setup_logger logger = setup_logger(name)
all = ['YOLOv3FPN', 'PPYOLOFPN']
def add_coord(x, data_format): b = x.shape[0] if data_format == 'NCHW': h = x.shape[2] w = x.shape[3] else: h = x.shape[1] w = x.shape[2]
gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1.
if data_format == 'NCHW':
gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
else:
gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
gx.stop_gradient = True
gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1.
if data_format == 'NCHW':
gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
else:
gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
gy.stop_gradient = True
return gx, gy
class YoloDetBlock(nn.Layer): def init(self, ch_in, channel, norm_type, name, data_format='NCHW'): """ YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767
Args:
ch_in (int): input channel
channel (int): base channel
norm_type (str): batch norm type
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(YoloDetBlock, self).__init__()
self.ch_in = ch_in
self.channel = channel
assert channel % 2 == 0, \
"channel {} cannot be divided by 2".format(channel)
conv_def = [
['conv0', ch_in, channel, 1, '.0.0'],
['conv1', channel, channel * 2, 3, '.0.1'],
['conv2', channel * 2, channel, 1, '.1.0'],
['conv3', channel, channel * 2, 3, '.1.1'],
['route', channel * 2, channel, 1, '.2'],
]
self.conv_module = nn.Sequential()
for idx, (conv_name, ch_in, ch_out, filter_size,
post_name) in enumerate(conv_def):
self.conv_module.add_sublayer(
conv_name,
ConvBNLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=filter_size,
padding=(filter_size - 1) // 2,
norm_type=norm_type,
data_format=data_format,
name=name + post_name))
self.tip = ConvBNLayer(
ch_in=channel,
ch_out=channel * 2,
filter_size=3,
padding=1,
norm_type=norm_type,
data_format=data_format,
name=name + '.tip')
def forward(self, inputs):
route = self.conv_module(inputs)
tip = self.tip(route)
return route, tip
class SPP(nn.Layer): def init(self, ch_in, ch_out, k, pool_size, norm_type, name, act='leaky', data_format='NCHW'): """ SPP layer, which consist of four pooling layer follwed by conv layer
Args:
ch_in (int): input channel of conv layer
ch_out (int): output channel of conv layer
k (int): kernel size of conv layer
norm_type (str): batch norm type
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(SPP, self).__init__()
self.pool = []
self.data_format = data_format
for size in pool_size:
pool = self.add_sublayer(
'{}.pool1'.format(name),
nn.MaxPool2D(
kernel_size=size,
stride=1,
padding=size // 2,
data_format=data_format,
ceil_mode=False))
self.pool.append(pool)
self.conv = ConvBNLayer(
ch_in,
ch_out,
k,
padding=k // 2,
norm_type=norm_type,
name=name,
act=act,
data_format=data_format)
def forward(self, x):
outs = [x]
for pool in self.pool:
outs.append(pool(x))
if self.data_format == "NCHW":
y = paddle.concat(outs, axis=1)
else:
y = paddle.concat(outs, axis=-1)
y = self.conv(y)
return y
class DropBlock(nn.Layer): def init(self, block_size, keep_prob, name, data_format='NCHW'): """ DropBlock layer, see https://arxiv.org/abs/1810.12890
Args:
block_size (int): block size
keep_prob (int): keep probability
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(DropBlock, self).__init__()
self.block_size = block_size
self.keep_prob = keep_prob
self.name = name
self.data_format = data_format
def forward(self, x):
if not self.training or self.keep_prob == 1:
return x
else:
gamma = (1. - self.keep_prob) / (self.block_size**2)
if self.data_format == 'NCHW':
shape = x.shape[2:]
else:
shape = x.shape[1:3]
for s in shape:
gamma *= s / (s - self.block_size + 1)
matrix = paddle.cast(paddle.rand(x.shape, x.dtype) < gamma, x.dtype)
mask_inv = F.max_pool2d(
matrix,
self.block_size,
stride=1,
padding=self.block_size // 2,
data_format=self.data_format)
mask = 1. - mask_inv
y = x * mask * (mask.numel() / mask.sum())
return y
class CoordConv(nn.Layer): def init(self, ch_in, ch_out, filter_size, padding, norm_type, name, data_format='NCHW'): """ CoordConv layer
Args:
ch_in (int): input channel
ch_out (int): output channel
filter_size (int): filter size, default 3
padding (int): padding size, default 0
norm_type (str): batch norm type, default bn
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(CoordConv, self).__init__()
self.conv = ConvBNLayer(
ch_in + 2,
ch_out,
filter_size=filter_size,
padding=padding,
norm_type=norm_type,
data_format=data_format,
name=name)
self.data_format = data_format
def forward(self, x):
gx, gy = add_coord(x, self.data_format)
if self.data_format == 'NCHW':
y = paddle.concat([x, gx, gy], axis=1)
else:
y = paddle.concat([x, gx, gy], axis=-1)
y = self.conv(y)
return y
class PPYOLODetBlock(nn.Layer): def init(self, cfg, name, data_format='NCHW'): """ PPYOLODetBlock layer
Args:
cfg (list): layer configs for this block
name (str): block name
data_format (str): data format, NCHW or NHWC
"""
super(PPYOLODetBlock, self).__init__()
self.conv_module = nn.Sequential()
for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
kwargs.update(
name='{}.{}'.format(name, conv_name), data_format=data_format)
self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))
conv_name, layer, args, kwargs = cfg[-1]
kwargs.update(
name='{}.{}'.format(name, conv_name), data_format=data_format)
self.tip = layer(*args, **kwargs)
def forward(self, inputs):
route = self.conv_module(inputs)
tip = self.tip(route)
return route, tip
class PPYOLOTinyDetBlock(nn.Layer): def init(self, ch_in, ch_out, name, drop_block=False, block_size=3, keep_prob=0.9, data_format='NCHW'): """ PPYOLO Tiny DetBlock layer Args: ch_in (list): input channel number ch_out (list): output channel number name (str): block name drop_block: whether user DropBlock block_size: drop block size keep_prob: probability to keep block in DropBlock data_format (str): data format, NCHW or NHWC """ super(PPYOLOTinyDetBlock, self).init() self.dropblock = drop_block self.conv_module = nn.Sequential()
cfgs = [
# name, in channels, out channels, filter_size,
# stride, padding, groups
['.0', ch_in, ch_out, 1, 1, 0, 1],
['.1', ch_out, ch_out, 5, 1, 2, ch_out],
['.2', ch_out, ch_out, 1, 1, 0, 1],
['.route', ch_out, ch_out, 5, 1, 2, ch_out],
]
for cfg in cfgs:
conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, \
groups = cfg
self.conv_module.add_sublayer(
name + conv_name,
ConvBNLayer(
ch_in=conv_ch_in,
ch_out=conv_ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
name=name + conv_name))
self.tip = ConvBNLayer(
ch_in=ch_out,
ch_out=ch_out,
filter_size=1,
stride=1,
padding=0,
groups=1,
name=name + conv_name)
if self.drop_block_:
self.drop_block = DropBlock(
block_size=block_size,
keep_prob=keep_prob,
data_format=data_format,
name=name + '.dropblock')
def forward(self, inputs):
if self.drop_block_:
inputs = self.drop_block(inputs)
route = self.conv_module(inputs)
tip = self.tip(route)
return route, tip
class PPYOLODetBlockCSP(nn.Layer): def init(self, cfg, ch_in, ch_out, act, norm_type, name, data_format='NCHW'): """ PPYOLODetBlockCSP layer
Args:
cfg (list): layer configs for this block
ch_in (int): input channel
ch_out (int): output channel
act (str): default mish
name (str): block name
data_format (str): data format, NCHW or NHWC
"""
super(PPYOLODetBlockCSP, self).__init__()
self.data_format = data_format
self.conv1 = ConvBNLayer(
ch_in,
ch_out,
1,
padding=0,
act=act,
norm_type=norm_type,
name=name + '.left',
data_format=data_format)
self.conv2 = ConvBNLayer(
ch_in,
ch_out,
1,
padding=0,
act=act,
norm_type=norm_type,
name=name + '.right',
data_format=data_format)
self.conv3 = ConvBNLayer(
ch_out * 2,
ch_out * 2,
1,
padding=0,
act=act,
norm_type=norm_type,
name=name,
data_format=data_format)
self.conv_module = nn.Sequential()
for idx, (layer_name, layer, args, kwargs) in enumerate(cfg):
kwargs.update(name=name + layer_name, data_format=data_format)
self.conv_module.add_sublayer(layer_name, layer(*args, **kwargs))
def forward(self, inputs):
conv_left = self.conv1(inputs)
conv_right = self.conv2(inputs)
conv_left = self.conv_module(conv_left)
if self.data_format == 'NCHW':
conv = paddle.concat([conv_left, conv_right], axis=1)
else:
conv = paddle.concat([conv_left, conv_right], axis=-1)
conv = self.conv3(conv)
return conv, conv
@register @serializable class YOLOv3FPN(nn.Layer): shared = ['norm_type', 'data_format']
def __init__(self,
in_channels=[512, 1024, 2048],
norm_type='bn',
data_format='NCHW'):
"""
YOLOv3FPN layer
Args:
in_channels (list): input channels for fpn
norm_type (str): batch norm type, default bn
data_format (str): data format, NCHW or NHWC
"""
super(YOLOv3FPN, self).__init__()
assert len(in_channels) > 0, "in_channels length should > 0"
self.in_channels = in_channels
self.num_blocks = len(in_channels)
self._out_channels = []
self.yolo_blocks = []
self.routes = []
self.data_format = data_format
for i in range(self.num_blocks):
name = 'yolo_block.{}'.format(i)
in_channel = in_channels[-i - 1]
if i > 0:
in_channel += 512 // (2**i)
yolo_block = self.add_sublayer(
name,
YoloDetBlock(
in_channel,
channel=512 // (2**i),
norm_type=norm_type,
data_format=data_format,
name=name))
self.yolo_blocks.append(yolo_block)
# tip layer output channel doubled
self._out_channels.append(1024 // (2**i))
# if(i==2) {
# }else{
# self._out_channels.append(1024 // (2**i))
# }
if i < self.num_blocks - 1:
name = 'yolo_transition.{}'.format(i)
route = self.add_sublayer(
name,
ConvBNLayer(
ch_in=512 // (2**i),
ch_out=256 // (2**i),
filter_size=1,
stride=1,
padding=0,
norm_type=norm_type,
data_format=data_format,
name=name))
self.routes.append(route)
def forward(self, blocks):
assert len(blocks) == self.num_blocks
blocks = blocks[::-1]
print(blocks)
yolo_feats = []
for i, block in enumerate(blocks):
if i > 0:
if self.data_format == 'NCHW':
block = paddle.concat([route, block], axis=1)
else:
block = paddle.concat([route, block], axis=-1)
route, tip = self.yolo_blocks[i](block)
yolo_feats.append(tip)
# if(i==2){
# }
# else{
# yolo_feats.append(tip)
# yolo_feats.append(tip)
# yolo_feats.append(tip)
# }
if i < self.num_blocks - 1:
route = self.routes[i](route)
route = F.interpolate(
route, scale_factor=2., data_format=self.data_format)
print(yolo_feats)
return yolo_feats
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]
@register @serializable class PPYOLOFPN(nn.Layer): shared = ['norm_type', 'data_format']
def __init__(self,
in_channels=[512, 1024, 2048],
norm_type='bn',
data_format='NCHW',
coord_conv=False,
conv_block_num=2,
drop_block=False,
block_size=3,
keep_prob=0.9,
spp=False):
"""
PPYOLOFPN layer
Args:
in_channels (list): input channels for fpn
norm_type (str): batch norm type, default bn
data_format (str): data format, NCHW or NHWC
coord_conv (bool): whether use CoordConv or not
conv_block_num (int): conv block num of each pan block
drop_block (bool): whether use DropBlock or not
block_size (int): block size of DropBlock
keep_prob (float): keep probability of DropBlock
spp (bool): whether use spp or not
"""
super(PPYOLOFPN, self).__init__()
assert len(in_channels) > 0, "in_channels length should > 0"
self.in_channels = in_channels
self.num_blocks = len(in_channels)
# parse kwargs
self.coord_conv = coord_conv
self.drop_block = drop_block
self.block_size = block_size
self.keep_prob = keep_prob
self.spp = spp
self.conv_block_num = conv_block_num
self.data_format = data_format
if self.coord_conv:
ConvLayer = CoordConv
else:
ConvLayer = ConvBNLayer
if self.drop_block:
dropblock_cfg = [[
'dropblock', DropBlock, [self.block_size, self.keep_prob],
dict()
]]
else:
dropblock_cfg = []
self._out_channels = []
self.yolo_blocks = []
self.routes = []
for i, ch_in in enumerate(self.in_channels[::-1]):
if i > 0:
ch_in += 512 // (2**i)
channel = 64 * (2**self.num_blocks) // (2**i)
base_cfg = []
c_in, c_out = ch_in, channel
for j in range(self.conv_block_num):
base_cfg += [
[
'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
dict(
padding=0, norm_type=norm_type)
],
[
'conv{}'.format(2 * j + 1), ConvBNLayer,
[c_out, c_out * 2, 3], dict(
padding=1, norm_type=norm_type)
],
]
c_in, c_out = c_out * 2, c_out
base_cfg += [[
'route', ConvLayer, [c_in, c_out, 1], dict(
padding=0, norm_type=norm_type)
], [
'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
padding=1, norm_type=norm_type)
]]
if self.conv_block_num == 2:
if i == 0:
if self.spp:
spp_cfg = [[
'spp', SPP, [channel * 4, channel, 1], dict(
pool_size=[5, 9, 13], norm_type=norm_type)
]]
else:
spp_cfg = []
cfg = base_cfg[0:3] + spp_cfg + base_cfg[
3:4] + dropblock_cfg + base_cfg[4:6]
else:
cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
elif self.conv_block_num == 0:
if self.spp and i == 0:
spp_cfg = [[
'spp', SPP, [c_in * 4, c_in, 1], dict(
pool_size=[5, 9, 13], norm_type=norm_type)
]]
else:
spp_cfg = []
cfg = spp_cfg + dropblock_cfg + base_cfg
name = 'yolo_block.{}'.format(i)
yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
self.yolo_blocks.append(yolo_block)
self._out_channels.append(channel * 2)
if i < self.num_blocks - 1:
name = 'yolo_transition.{}'.format(i)
route = self.add_sublayer(
name,
ConvBNLayer(
ch_in=channel,
ch_out=256 // (2**i),
filter_size=1,
stride=1,
padding=0,
norm_type=norm_type,
data_format=data_format,
name=name))
self.routes.append(route)
def forward(self, blocks):
assert len(blocks) == self.num_blocks
blocks = blocks[::-1]
yolo_feats = []
for i, block in enumerate(blocks):
if i > 0:
if self.data_format == 'NCHW':
logger.info("进入ChannelA")
block = ChannelAttention(block)
block = SpatialAttention()
block = paddle.concat([route, block], axis=1)
else:
block = ChannelAttention(block)
block = SpatialAttention()
block = paddle.concat([route, block], axis=-1)
route, tip = self.yolo_blocks[i](block)
yolo_feats.append(tip)
if i < self.num_blocks - 1:
route = self.routes[i](route)
route = F.interpolate(
route, scale_factor=2., data_format=self.data_format)
return yolo_feats
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]
@register @serializable class PPYOLOTinyFPN(nn.Layer): shared = ['norm_type', 'data_format']
def __init__(self,
in_channels=[80, 56, 34],
detection_block_channels=[160, 128, 96],
norm_type='bn',
data_format='NCHW',
**kwargs):
"""
PPYOLO Tiny FPN layer
Args:
in_channels (list): input channels for fpn
detection_block_channels (list): channels in fpn
norm_type (str): batch norm type, default bn
data_format (str): data format, NCHW or NHWC
kwargs: extra key-value pairs, such as parameter of DropBlock and spp
"""
super(PPYOLOTinyFPN, self).__init__()
assert len(in_channels) > 0, "in_channels length should > 0"
self.in_channels = in_channels[::-1]
assert len(detection_block_channels
) > 0, "detection_block_channelslength should > 0"
self.detection_block_channels = detection_block_channels
self.data_format = data_format
self.num_blocks = len(in_channels)
# parse kwargs
self.drop_block = kwargs.get('drop_block', False)
self.block_size = kwargs.get('block_size', 3)
self.keep_prob = kwargs.get('keep_prob', 0.9)
self.spp_ = kwargs.get('spp', False)
if self.spp_:
self.spp = SPP(self.in_channels[0] * 4,
self.in_channels[0],
k=1,
pool_size=[5, 9, 13],
norm_type=norm_type,
name='spp')
self._out_channels = []
self.yolo_blocks = []
self.routes = []
for i, (
ch_in, ch_out
) in enumerate(zip(self.in_channels, self.detection_block_channels)):
name = 'yolo_block.{}'.format(i)
if i > 0:
ch_in += self.detection_block_channels[i - 1]
yolo_block = self.add_sublayer(
name,
PPYOLOTinyDetBlock(
ch_in,
ch_out,
name,
drop_block=self.drop_block,
block_size=self.block_size,
keep_prob=self.keep_prob))
self.yolo_blocks.append(yolo_block)
self._out_channels.append(ch_out)
if i < self.num_blocks - 1:
name = 'yolo_transition.{}'.format(i)
route = self.add_sublayer(
name,
ConvBNLayer(
ch_in=ch_out,
ch_out=ch_out,
filter_size=1,
stride=1,
padding=0,
norm_type=norm_type,
data_format=data_format,
name=name))
self.routes.append(route)
def forward(self, blocks):
assert len(blocks) == self.num_blocks
blocks = blocks[::-1]
yolo_feats = []
for i, block in enumerate(blocks):
if i == 0 and self.spp_:
block = self.spp(block)
if i > 0:
if self.data_format == 'NCHW':
block = paddle.concat([route, block], axis=1)
else:
block = paddle.concat([route, block], axis=-1)
route, tip = self.yolo_blocks[i](block)
yolo_feats.append(tip)
if i < self.num_blocks - 1:
route = self.routes[i](route)
route = F.interpolate(
route, scale_factor=2., data_format=self.data_format)
return yolo_feats
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]
@register @serializable class PPYOLOPAN(nn.Layer): shared = ['norm_type', 'data_format']
def __init__(self,
in_channels=[512, 1024, 2048],
norm_type='bn',
data_format='NCHW',
act='mish',
conv_block_num=3,
drop_block=False,
block_size=3,
keep_prob=0.9,
spp=False):
"""
PPYOLOPAN layer with SPP, DropBlock and CSP connection.
Args:
in_channels (list): input channels for fpn
norm_type (str): batch norm type, default bn
data_format (str): data format, NCHW or NHWC
act (str): activation function, default mish
conv_block_num (int): conv block num of each pan block
drop_block (bool): whether use DropBlock or not
block_size (int): block size of DropBlock
keep_prob (float): keep probability of DropBlock
spp (bool): whether use spp or not
"""
super(PPYOLOPAN, self).__init__()
assert len(in_channels) > 0, "in_channels length should > 0"
self.in_channels = in_channels
self.num_blocks = len(in_channels)
# parse kwargs
self.drop_block = drop_block
self.block_size = block_size
self.keep_prob = keep_prob
self.spp = spp
self.conv_block_num = conv_block_num
self.data_format = data_format
if self.drop_block:
dropblock_cfg = [[
'dropblock', DropBlock, [self.block_size, self.keep_prob],
dict()
]]
else:
dropblock_cfg = []
# fpn
self.fpn_blocks = []
self.fpn_routes = []
fpn_channels = []
for i, ch_in in enumerate(self.in_channels[::-1]):
if i > 0:
ch_in += 512 // (2**(i - 1))
channel = 512 // (2**i)
base_cfg = []
for j in range(self.conv_block_num):
base_cfg += [
# name, layer, args
[
'{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
dict(
padding=0, act=act, norm_type=norm_type)
],
[
'{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
dict(
padding=1, act=act, norm_type=norm_type)
]
]
if i == 0 and self.spp:
base_cfg[3] = [
'spp', SPP, [channel * 4, channel, 1], dict(
pool_size=[5, 9, 13], act=act, norm_type=norm_type)
]
cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
name = 'fpn.{}'.format(i)
fpn_block = self.add_sublayer(
name,
PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
data_format))
self.fpn_blocks.append(fpn_block)
fpn_channels.append(channel * 2)
if i < self.num_blocks - 1:
name = 'fpn_transition.{}'.format(i)
route = self.add_sublayer(
name,
ConvBNLayer(
ch_in=channel * 2,
ch_out=channel,
filter_size=1,
stride=1,
padding=0,
act=act,
norm_type=norm_type,
data_format=data_format,
name=name))
self.fpn_routes.append(route)
# pan
self.pan_blocks = []
self.pan_routes = []
self._out_channels = [512 // (2**(self.num_blocks - 2)), ]
for i in reversed(range(self.num_blocks - 1)):
name = 'pan_transition.{}'.format(i)
route = self.add_sublayer(
name,
ConvBNLayer(
ch_in=fpn_channels[i + 1],
ch_out=fpn_channels[i + 1],
filter_size=3,
stride=2,
padding=1,
act=act,
norm_type=norm_type,
data_format=data_format,
name=name))
self.pan_routes = [route, ] + self.pan_routes
base_cfg = []
ch_in = fpn_channels[i] + fpn_channels[i + 1]
channel = 512 // (2**i)
for j in range(self.conv_block_num):
base_cfg += [
# name, layer, args
[
'{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
dict(
padding=0, act=act, norm_type=norm_type)
],
[
'{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
dict(
padding=1, act=act, norm_type=norm_type)
]
]
cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
name = 'pan.{}'.format(i)
pan_block = self.add_sublayer(
name,
PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
data_format))
self.pan_blocks = [pan_block, ] + self.pan_blocks
self._out_channels.append(channel * 2)
self._out_channels = self._out_channels[::-1]
def forward(self, blocks):
assert len(blocks) == self.num_blocks
blocks = blocks[::-1]
# fpn
fpn_feats = []
for i, block in enumerate(blocks):
if i > 0:
if self.data_format == 'NCHW':
block = paddle.concat([route, block], axis=1)
else:
block = paddle.concat([route, block], axis=-1)
route, tip = self.fpn_blocks[i](block)
fpn_feats.append(tip)
if i < self.num_blocks - 1:
route = self.fpn_routes[i](route)
route = F.interpolate(
route, scale_factor=2., data_format=self.data_format)
pan_feats = [fpn_feats[-1], ]
route = fpn_feats[self.num_blocks - 1]
for i in reversed(range(self.num_blocks - 1)):
block = fpn_feats[i]
route = self.pan_routes[i](route)
if self.data_format == 'NCHW':
block = paddle.concat([route, block], axis=1)
else:
block = paddle.concat([route, block], axis=-1)
route, tip = self.pan_blocks[i](block)
pan_feats.append(tip)
return pan_feats[::-1]
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]
class ChannelAttention(nn.Layer): def init(self, in_planes, ratio=16): super(ChannelAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool2D(1) self.max_pool = nn.AdaptiveAvgPool2D(1)
self.fc1 = nn.Conv2D(in_planes, in_planes // 16, 1, bias=False)
self.relu1 = F.relu()
self.fc2 = nn.Conv2D(in_planes // 16, in_planes, 1, bias=False)
self.sigmoid = F.sigmoid()
def forward(self, x):
logger.info("进入ChannelAttention")
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SELayer(nn.Layer): def init(self, ch, reductionratio=16): super(SELayer, self).init() self.pool = nn.AdaptiveAvgPool2D(1) stdv = 1.0 / math.sqrt(ch) c = ch // reductionratio self.squeeze = nn.Linear( ch, c, weight_attr=paddle.ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=True)
stdv = 1.0 / math.sqrt(c_)
self.extract = nn.Linear(
c_,
ch,
weight_attr=paddle.ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=True)
def forward(self, inputs):
out = self.pool(inputs)
out = paddle.squeeze(out, axis=[2, 3])
out = self.squeeze(out)
out = F.relu(out)
out = self.extract(out)
out = F.sigmoid(out)
out = paddle.unsqueeze(out, axis=[2, 3])
scale = out * inputs
return scale
class SpatialAttention(nn.Layer): def init(self, kernel_size=7): super(SpatialAttention, self).init() logger.info("进入SpatialAttention")
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2D(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = F.sigmoid()
def forward(self, x):
avg_out = paddle.mean(x, dim=1, keepdim=True)
max_out, _ = paddle.max(x, dim=1, keepdim=True)
x = paddle.concat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
还需要在初始化中倒入模块吗?
需要在初始化中倒入模块,所有继承自nn.Layer类都需要在初始化中倒入模块,类似nn.Conv2D等内置层
您帮我看看,这样初始化对吗? 在AT.py中有我想添加的类SELayer(),我在init()中 from . import AT , from .AT import * 在yolo_fpn.py中 from .AT import ChannelAttention, SELayer, SpatialAttention 最后在ppyoloFPN的forward()中使用了SELayer() 但是,notebook中依然没有打印出logger.info('Hello ZS SELayer')内容,请问我该怎么办?
不对,上面已经说过了在init函数中初始化
这个写法是ok的
非常感谢!请问在init()函数中的下面这句,参数block是任意变量,还是必须在上面代码中出现过的变量? if self.se: self.at = SELayer(block)
我这个self.at = SELayer(block)中的block实际上是骨干网络输出的特征层,但是在init()函数中没有对应的变量
在forward()中有骨干网络输出的特征层 def forward(self, blocks): assert len(blocks) == self.num_blocks blocks = blocks[::-1] yolo_feats = [] for i, block in enumerate(blocks): if i > 0: if self.data_format == 'NCHW': if self.se: logger.info('Hello ZS SELayer') block = self.at(block) block = paddle.concat([route, block], axis=1) else: block = paddle.concat([route, block], axis=1) else: if self.se: logger.info('Hello ZS SELayer') block = self.at(block) block = paddle.concat([route, block], axis=-1) else: block = paddle.concat([route, block], axis=-1)
route, tip = self.yolo_blocks[i](block)
yolo_feats.append(tip)
请问为什么我的print语句的内容在notebook中打印不出来,我想看代码的中间参数的内容,但是,无论是用logger.info()还是用print()语句都不能进行打印?
在其他位置能打印吗?
其他位置也不能打印print
我怀疑在PaddleDetection/ppdet/modeling/necks/yolo_fpn.py这个文件里改代码不起作用,因为我将PPYOLOFPN这个类整体注释掉,模型依然能够跑起来
那你用到PPYOLOFPN这个类了吗?你运行的是什么模型?
architecture: YOLOv3 pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams norm_type: sync_bn use_ema: true ema_decay: 0.9998
YOLOv3: backbone: ResNet neck: PPYOLOFPN yolo_head: YOLOv3Head post_process: BBoxPostProcess 用到了
请问我想改源代码,应该怎么办?
非常感谢您的帮助!
Since this issue has not been updated for more than three months, it will be closed, if it is not solved or there is a follow-up one, please reopen it at any time and we will continue to follow up. It is recommended to pull and try the latest code first. 由于该问题超过三个月未更新,将会被关闭,若问题未解决或有后续问题,请随时重新打开(建议先拉取最新代码进行尝试),我们会继续跟进。
我在PaddleDetection/ppdet/modeling/necks/yolo_fpn.py 做了如下修改: 【在forward中加入 block = ChannelAttention(block); block = SpatialAttention()】