Open thongvhoang opened 2 years ago
First you can train without --eval
and make sure you finish the training first.
Then make sure that there is no problem in your val json of eval dataset and the images can be read by OpenCV.
First you can train without
--eval
and make sure you finish the training first. Then make sure that there is no problem in your val json of eval dataset and the images can be read by OpenCV.
I don't think so that my val json is a problem because I train the Picodet model with my val json and it works fine.
/usr/local/lib/python3.7/dist-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if data.dtype == np.object:
/usr/local/lib/python3.7/dist-packages/scipy/fft/__init__.py:97: DeprecationWarning: The module numpy.dual is deprecated. Instead of using dual, use the functions directly from numpy or scipy.
from numpy.dual import register_func
/usr/local/lib/python3.7/dist-packages/scipy/sparse/sputils.py:17: DeprecationWarning: `np.typeDict` is a deprecated alias for `np.sctypeDict`.
supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
/usr/local/lib/python3.7/dist-packages/scipy/special/orthogonal.py:81: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around, int,
loading annotations into memory...
Done (t=0.04s)
creating index...
index created!
W0704 08:17:58.320560 31923 gpu_context.cc:278] Please NOTE: device: 0, GPU Compute Capability: 6.0, Driver API Version: 11.2, Runtime API Version: 10.2
W0704 08:17:58.329401 31923 gpu_context.cc:306] device: 0, cuDNN Version: 7.6.
[07/04 08:18:08] ppdet.utils.checkpoint INFO: Finish resuming model weights: output/picodet_m_416_coco_lcnet/model_final.pdparams
[07/04 08:18:13] ppdet.engine INFO: Epoch: [30] [ 0/526] learning_rate: 0.000234 loss_vfl: 0.429801 loss_bbox: 0.216690 loss_dfl: 0.281943 loss: 0.928434 eta: 0:36:49 batch_cost: 0.4200 data_cost: 0.0035 ips: 23.8099 images/s
[07/04 08:18:29] ppdet.engine INFO: Epoch: [30] [ 5/526] learning_rate: 0.000234 loss_vfl: 0.410616 loss_bbox: 0.226801 loss_dfl: 0.272752 loss: 0.922487 eta: 4:05:52 batch_cost: 3.2847 data_cost: 3.0771 ips: 3.0444 images/s
[07/04 08:19:02] ppdet.engine INFO: Epoch: [30] [ 10/526] learning_rate: 0.000234 loss_vfl: 0.382467 loss_bbox: 0.213267 loss_dfl: 0.262357 loss: 0.862539 eta: 6:30:58 batch_cost: 6.4616 data_cost: 6.2654 ips: 1.5476 images/s
[07/04 08:19:34] ppdet.engine INFO: Epoch: [30] [ 15/526] learning_rate: 0.000234 loss_vfl: 0.362904 loss_bbox: 0.175328 loss_dfl: 0.270935 loss: 0.782068 eta: 7:19:13 batch_cost: 6.2478 data_cost: 6.0377 ips: 1.6006 images/s
[07/04 08:20:06] ppdet.engine INFO: Epoch: [30] [ 20/526] learning_rate: 0.000234 loss_vfl: 0.405658 loss_bbox: 0.220620 loss_dfl: 0.274387 loss: 0.886294 eta: 7:45:06 batch_cost: 6.2897 data_cost: 6.0679 ips: 1.5899 images/s
[07/04 08:20:40] ppdet.engine INFO: Epoch: [30] [ 25/526] learning_rate: 0.000234 loss_vfl: 0.351791 loss_bbox: 0.214690 loss_dfl: 0.261170 loss: 0.849986 eta: 8:08:41 batch_cost: 6.7575 data_cost: 6.5551 ips: 1.4798 images/s
[07/04 08:21:13] ppdet.engine INFO: Epoch: [30] [ 30/526] learning_rate: 0.000234 loss_vfl: 0.367283 loss_bbox: 0.226409 loss_dfl: 0.270896 loss: 0.848719 eta: 8:21:40 batch_cost: 6.5575 data_cost: 6.3554 ips: 1.5250 images/s
[07/04 08:21:46] ppdet.engine INFO: Epoch: [30] [ 35/526] learning_rate: 0.000234 loss_vfl: 0.385411 loss_bbox: 0.186166 loss_dfl: 0.271677 loss: 0.828303 eta: 8:30:13 batch_cost: 6.5019 data_cost: 6.3064 ips: 1.5380 images/s
[07/04 08:22:17] ppdet.engine INFO: Epoch: [30] [ 40/526] learning_rate: 0.000234 loss_vfl: 0.440741 loss_bbox: 0.191622 loss_dfl: 0.241397 loss: 0.869412 eta: 8:33:35 batch_cost: 6.2229 data_cost: 6.0136 ips: 1.6070 images/s
[07/04 08:23:10] ppdet.engine INFO: Epoch: [30] [ 45/526] learning_rate: 0.000234 loss_vfl: 0.411759 loss_bbox: 0.217600 loss_dfl: 0.274928 loss: 0.929484 eta: 9:16:17 batch_cost: 10.4747 data_cost: 10.2710 ips: 0.9547 images/s
[07/04 08:23:43] ppdet.engine INFO: Epoch: [30] [ 50/526] learning_rate: 0.000234 loss_vfl: 0.378255 loss_bbox: 0.230514 loss_dfl: 0.274903 loss: 0.904595 eta: 9:16:35 batch_cost: 6.4981 data_cost: 6.3042 ips: 1.5389 images/s
[07/04 08:24:14] ppdet.engine INFO: Epoch: [30] [ 55/526] learning_rate: 0.000234 loss_vfl: 0.375699 loss_bbox: 0.216554 loss_dfl: 0.270524 loss: 0.879218 eta: 9:13:03 batch_cost: 6.0219 data_cost: 5.8331 ips: 1.6606 images/s
[07/04 08:24:44] ppdet.engine INFO: Epoch: [30] [ 60/526] learning_rate: 0.000234 loss_vfl: 0.397382 loss_bbox: 0.232140 loss_dfl: 0.270320 loss: 0.910500 eta: 9:10:27 batch_cost: 6.0851 data_cost: 5.8873 ips: 1.6434 images/s
[07/04 08:25:17] ppdet.engine INFO: Epoch: [30] [ 65/526] learning_rate: 0.000234 loss_vfl: 0.399165 loss_bbox: 0.213154 loss_dfl: 0.267611 loss: 0.870209 eta: 9:10:20 batch_cost: 6.4152 data_cost: 6.2111 ips: 1.5588 images/s
[07/04 08:25:49] ppdet.engine INFO: Epoch: [30] [ 70/526] learning_rate: 0.000234 loss_vfl: 0.338821 loss_bbox: 0.174160 loss_dfl: 0.273611 loss: 0.795376 eta: 9:09:10 batch_cost: 6.2494 data_cost: 6.0452 ips: 1.6001 images/s
[07/04 08:26:24] ppdet.engine INFO: Epoch: [30] [ 75/526] learning_rate: 0.000234 loss_vfl: 0.369768 loss_bbox: 0.225486 loss_dfl: 0.246591 loss: 0.848217 eta: 9:12:31 batch_cost: 7.0325 data_cost: 6.8245 ips: 1.4220 images/s
[07/04 08:26:59] ppdet.engine INFO: Epoch: [30] [ 80/526] learning_rate: 0.000234 loss_vfl: 0.375087 loss_bbox: 0.192145 loss_dfl: 0.276981 loss: 0.841399 eta: 9:14:29 batch_cost: 6.8612 data_cost: 6.6697 ips: 1.4575 images/s
[07/04 08:27:29] ppdet.engine INFO: Epoch: [30] [ 85/526] learning_rate: 0.000234 loss_vfl: 0.319496 loss_bbox: 0.162922 loss_dfl: 0.256047 loss: 0.726528 eta: 9:11:46 batch_cost: 5.9876 data_cost: 5.7941 ips: 1.6701 images/s
[07/04 08:28:01] ppdet.engine INFO: Epoch: [30] [ 90/526] learning_rate: 0.000234 loss_vfl: 0.409093 loss_bbox: 0.257046 loss_dfl: 0.268151 loss: 0.940789 eta: 9:10:21 batch_cost: 6.2107 data_cost: 6.0144 ips: 1.6101 images/s
[07/04 08:28:32] ppdet.engine INFO: Epoch: [30] [ 95/526] learning_rate: 0.000234 loss_vfl: 0.351439 loss_bbox: 0.158058 loss_dfl: 0.273113 loss: 0.775364 eta: 9:08:45 batch_cost: 6.1509 data_cost: 5.9548 ips: 1.6258 images/s
[07/04 08:29:02] ppdet.engine INFO: Epoch: [30] [100/526] learning_rate: 0.000234 loss_vfl: 0.423639 loss_bbox: 0.234954 loss_dfl: 0.280912 loss: 0.953623 eta: 9:06:35 batch_cost: 5.9890 data_cost: 5.7801 ips: 1.6697 images/s
[07/04 08:29:32] ppdet.engine INFO: Epoch: [30] [105/526] learning_rate: 0.000234 loss_vfl: 0.360931 loss_bbox: 0.206550 loss_dfl: 0.269648 loss: 0.815192 eta: 9:04:16 batch_cost: 5.9148 data_cost: 5.7105 ips: 1.6907 images/s
[07/04 08:30:05] ppdet.engine INFO: Epoch: [30] [110/526] learning_rate: 0.000234 loss_vfl: 0.371823 loss_bbox: 0.201012 loss_dfl: 0.275971 loss: 0.819592 eta: 9:04:09 batch_cost: 6.4443 data_cost: 6.2407 ips: 1.5518 images/s
[07/04 08:30:38] ppdet.engine INFO: Epoch: [30] [115/526] learning_rate: 0.000234 loss_vfl: 0.338809 loss_bbox: 0.176295 loss_dfl: 0.262250 loss: 0.760780 eta: 9:04:40 batch_cost: 6.6208 data_cost: 6.4190 ips: 1.5104 images/s
[07/04 08:31:11] ppdet.engine INFO: Epoch: [30] [120/526] learning_rate: 0.000234 loss_vfl: 0.381612 loss_bbox: 0.228308 loss_dfl: 0.277745 loss: 0.912484 eta: 9:04:44 batch_cost: 6.5185 data_cost: 6.3231 ips: 1.5341 images/s
[07/04 08:31:43] ppdet.engine INFO: Epoch: [30] [125/526] learning_rate: 0.000234 loss_vfl: 0.348302 loss_bbox: 0.193593 loss_dfl: 0.273023 loss: 0.814918 eta: 9:03:54 batch_cost: 6.2724 data_cost: 6.0702 ips: 1.5943 images/s
[07/04 08:32:46] ppdet.engine INFO: Epoch: [30] [130/526] learning_rate: 0.000234 loss_vfl: 0.356520 loss_bbox: 0.200975 loss_dfl: 0.257538 loss: 0.798028 eta: 9:23:32 batch_cost: 12.5342 data_cost: 12.3390 ips: 0.7978 images/s
[07/04 08:33:18] ppdet.engine INFO: Epoch: [30] [135/526] learning_rate: 0.000234 loss_vfl: 0.324831 loss_bbox: 0.179908 loss_dfl: 0.267682 loss: 0.760818 eta: 9:21:54 batch_cost: 6.2423 data_cost: 6.0426 ips: 1.6020 images/s
[07/04 08:33:49] ppdet.engine INFO: Epoch: [30] [140/526] learning_rate: 0.000234 loss_vfl: 0.392030 loss_bbox: 0.184235 loss_dfl: 0.283842 loss: 0.835452 eta: 9:19:56 batch_cost: 6.1122 data_cost: 5.9020 ips: 1.6361 images/s
[07/04 08:34:19] ppdet.engine INFO: Epoch: [30] [145/526] learning_rate: 0.000234 loss_vfl: 0.393940 loss_bbox: 0.205640 loss_dfl: 0.264782 loss: 0.935550 eta: 9:17:50 batch_cost: 6.0284 data_cost: 5.8239 ips: 1.6588 images/s
[07/04 08:34:53] ppdet.engine INFO: Epoch: [30] [150/526] learning_rate: 0.000234 loss_vfl: 0.371489 loss_bbox: 0.206642 loss_dfl: 0.246825 loss: 0.826814 eta: 9:17:56 batch_cost: 6.7745 data_cost: 6.5769 ips: 1.4761 images/s
[07/04 08:35:26] ppdet.engine INFO: Epoch: [30] [155/526] learning_rate: 0.000234 loss_vfl: 0.403456 loss_bbox: 0.203092 loss_dfl: 0.265223 loss: 0.871771 eta: 9:16:55 batch_cost: 6.3764 data_cost: 6.1692 ips: 1.5683 images/s
[07/04 08:35:58] ppdet.engine INFO: Epoch: [30] [160/526] learning_rate: 0.000234 loss_vfl: 0.409780 loss_bbox: 0.265978 loss_dfl: 0.277989 loss: 0.953893 eta: 9:15:50 batch_cost: 6.3401 data_cost: 6.1403 ips: 1.5773 images/s
[07/04 08:36:30] ppdet.engine INFO: Epoch: [30] [165/526] learning_rate: 0.000234 loss_vfl: 0.329531 loss_bbox: 0.196506 loss_dfl: 0.282184 loss: 0.808221 eta: 9:15:00 batch_cost: 6.4316 data_cost: 6.2269 ips: 1.5548 images/s
[07/04 08:37:09] ppdet.engine INFO: Epoch: [30] [170/526] learning_rate: 0.000234 loss_vfl: 0.379238 loss_bbox: 0.213273 loss_dfl: 0.284255 loss: 0.876984 eta: 9:17:09 batch_cost: 7.6173 data_cost: 7.4226 ips: 1.3128 images/s
[07/04 08:37:39] ppdet.engine INFO: Epoch: [30] [175/526] learning_rate: 0.000234 loss_vfl: 0.406193 loss_bbox: 0.202611 loss_dfl: 0.264923 loss: 0.906799 eta: 9:15:00 batch_cost: 5.9019 data_cost: 5.7091 ips: 1.6944 images/s
[07/04 08:38:13] ppdet.engine INFO: Epoch: [30] [180/526] learning_rate: 0.000234 loss_vfl: 0.428965 loss_bbox: 0.206625 loss_dfl: 0.271385 loss: 0.887883 eta: 9:14:58 batch_cost: 6.7730 data_cost: 6.5747 ips: 1.4764 images/s
[07/04 08:38:44] ppdet.engine INFO: Epoch: [30] [185/526] learning_rate: 0.000234 loss_vfl: 0.408150 loss_bbox: 0.257625 loss_dfl: 0.278183 loss: 0.934830 eta: 9:13:37 batch_cost: 6.1976 data_cost: 5.9936 ips: 1.6135 images/s
[07/04 08:39:16] ppdet.engine INFO: Epoch: [30] [190/526] learning_rate: 0.000234 loss_vfl: 0.399427 loss_bbox: 0.217459 loss_dfl: 0.268942 loss: 0.877793 eta: 9:12:15 batch_cost: 6.1763 data_cost: 5.9777 ips: 1.6191 images/s
[07/04 08:39:48] ppdet.engine INFO: Epoch: [30] [195/526] learning_rate: 0.000234 loss_vfl: 0.367440 loss_bbox: 0.212307 loss_dfl: 0.274233 loss: 0.871385 eta: 9:11:24 batch_cost: 6.3912 data_cost: 6.2032 ips: 1.5647 images/s
[07/04 08:40:21] ppdet.engine INFO: Epoch: [30] [200/526] learning_rate: 0.000234 loss_vfl: 0.366338 loss_bbox: 0.184318 loss_dfl: 0.265318 loss: 0.807220 eta: 9:10:37 batch_cost: 6.4211 data_cost: 6.2129 ips: 1.5574 images/s
[07/04 08:40:51] ppdet.engine INFO: Epoch: [30] [205/526] learning_rate: 0.000234 loss_vfl: 0.362534 loss_bbox: 0.189367 loss_dfl: 0.258760 loss: 0.816139 eta: 9:09:06 batch_cost: 6.0495 data_cost: 5.8536 ips: 1.6530 images/s
[07/04 08:41:23] ppdet.engine INFO: Epoch: [30] [210/526] learning_rate: 0.000234 loss_vfl: 0.420306 loss_bbox: 0.221630 loss_dfl: 0.273549 loss: 0.902906 eta: 9:07:55 batch_cost: 6.1998 data_cost: 6.0037 ips: 1.6130 images/s
[07/04 08:41:55] ppdet.engine INFO: Epoch: [30] [215/526] learning_rate: 0.000234 loss_vfl: 0.397242 loss_bbox: 0.239314 loss_dfl: 0.272779 loss: 0.896754 eta: 9:07:15 batch_cost: 6.4492 data_cost: 6.2461 ips: 1.5506 images/s
[07/04 08:42:26] ppdet.engine INFO: Epoch: [30] [220/526] learning_rate: 0.000234 loss_vfl: 0.367279 loss_bbox: 0.207655 loss_dfl: 0.258904 loss: 0.852474 eta: 9:05:46 batch_cost: 6.0090 data_cost: 5.7985 ips: 1.6642 images/s
[07/04 08:42:56] ppdet.engine INFO: Epoch: [30] [225/526] learning_rate: 0.000234 loss_vfl: 0.365210 loss_bbox: 0.201924 loss_dfl: 0.267399 loss: 0.832329 eta: 9:04:24 batch_cost: 6.0512 data_cost: 5.8455 ips: 1.6526 images/s
[07/04 08:43:29] ppdet.engine INFO: Epoch: [30] [230/526] learning_rate: 0.000234 loss_vfl: 0.337811 loss_bbox: 0.223935 loss_dfl: 0.253527 loss: 0.847874 eta: 9:03:46 batch_cost: 6.4358 data_cost: 6.2284 ips: 1.5538 images/s
[07/04 08:44:00] ppdet.engine INFO: Epoch: [30] [235/526] learning_rate: 0.000234 loss_vfl: 0.377923 loss_bbox: 0.235267 loss_dfl: 0.266141 loss: 0.838544 eta: 9:02:39 batch_cost: 6.1607 data_cost: 5.9589 ips: 1.6232 images/s
[07/04 08:44:42] ppdet.engine INFO: Epoch: [30] [240/526] learning_rate: 0.000234 loss_vfl: 0.365305 loss_bbox: 0.204567 loss_dfl: 0.279140 loss: 0.889250 eta: 9:05:18 batch_cost: 8.3174 data_cost: 8.1052 ips: 1.2023 images/s
[07/04 08:45:25] ppdet.engine INFO: Epoch: [30] [245/526] learning_rate: 0.000234 loss_vfl: 0.376163 loss_bbox: 0.189279 loss_dfl: 0.281396 loss: 0.861057 eta: 9:08:01 batch_cost: 8.4416 data_cost: 8.2412 ips: 1.1846 images/s
[07/04 08:45:57] ppdet.engine INFO: Epoch: [30] [250/526] learning_rate: 0.000234 loss_vfl: 0.397535 loss_bbox: 0.220459 loss_dfl: 0.268722 loss: 0.899607 eta: 9:07:12 batch_cost: 6.3918 data_cost: 6.1853 ips: 1.5645 images/s
[07/04 08:46:30] ppdet.engine INFO: Epoch: [30] [255/526] learning_rate: 0.000234 loss_vfl: 0.361986 loss_bbox: 0.188704 loss_dfl: 0.275878 loss: 0.819698 eta: 9:06:39 batch_cost: 6.5513 data_cost: 6.3584 ips: 1.5264 images/s
[07/04 08:47:12] ppdet.engine INFO: Epoch: [30] [260/526] learning_rate: 0.000234 loss_vfl: 0.422700 loss_bbox: 0.218101 loss_dfl: 0.284449 loss: 0.942230 eta: 9:08:57 batch_cost: 8.3346 data_cost: 8.1397 ips: 1.1998 images/s
[07/04 08:48:04] ppdet.engine INFO: Epoch: [30] [265/526] learning_rate: 0.000234 loss_vfl: 0.375547 loss_bbox: 0.220359 loss_dfl: 0.275944 loss: 0.859988 eta: 9:14:01 batch_cost: 10.1797 data_cost: 9.9883 ips: 0.9824 images/s
[07/04 08:48:35] ppdet.engine INFO: Epoch: [30] [270/526] learning_rate: 0.000234 loss_vfl: 0.392788 loss_bbox: 0.201413 loss_dfl: 0.264923 loss: 0.835495 eta: 9:12:49 batch_cost: 6.2320 data_cost: 6.0129 ips: 1.6046 images/s
[07/04 08:49:08] ppdet.engine INFO: Epoch: [30] [275/526] learning_rate: 0.000234 loss_vfl: 0.387286 loss_bbox: 0.213138 loss_dfl: 0.263240 loss: 0.854135 eta: 9:12:02 batch_cost: 6.4979 data_cost: 6.2993 ips: 1.5389 images/s
[07/04 08:49:51] ppdet.engine INFO: Epoch: [30] [280/526] learning_rate: 0.000234 loss_vfl: 0.423613 loss_bbox: 0.258676 loss_dfl: 0.267565 loss: 0.971484 eta: 9:14:08 batch_cost: 8.4346 data_cost: 8.2274 ips: 1.1856 images/s
[07/04 08:50:21] ppdet.engine INFO: Epoch: [30] [285/526] learning_rate: 0.000234 loss_vfl: 0.400973 loss_bbox: 0.234442 loss_dfl: 0.268832 loss: 0.838679 eta: 9:12:39 batch_cost: 6.0361 data_cost: 5.8262 ips: 1.6567 images/s
[07/04 08:50:53] ppdet.engine INFO: Epoch: [30] [290/526] learning_rate: 0.000234 loss_vfl: 0.346771 loss_bbox: 0.206547 loss_dfl: 0.273426 loss: 0.844545 eta: 9:11:22 batch_cost: 6.1543 data_cost: 5.9393 ips: 1.6249 images/s
[07/04 08:51:25] ppdet.engine INFO: Epoch: [30] [295/526] learning_rate: 0.000234 loss_vfl: 0.323033 loss_bbox: 0.180434 loss_dfl: 0.250310 loss: 0.790440 eta: 9:10:30 batch_cost: 6.4398 data_cost: 6.2369 ips: 1.5528 images/s
[07/04 08:51:57] ppdet.engine INFO: Epoch: [30] [300/526] learning_rate: 0.000234 loss_vfl: 0.360624 loss_bbox: 0.182758 loss_dfl: 0.281024 loss: 0.816123 eta: 9:09:26 batch_cost: 6.2733 data_cost: 6.0673 ips: 1.5941 images/s
[07/04 08:52:29] ppdet.engine INFO: Epoch: [30] [305/526] learning_rate: 0.000234 loss_vfl: 0.381917 loss_bbox: 0.205289 loss_dfl: 0.257753 loss: 0.822699 eta: 9:08:19 batch_cost: 6.2395 data_cost: 6.0341 ips: 1.6027 images/s
[07/04 08:53:01] ppdet.engine INFO: Epoch: [30] [310/526] learning_rate: 0.000234 loss_vfl: 0.379168 loss_bbox: 0.190178 loss_dfl: 0.272284 loss: 0.936051 eta: 9:07:26 batch_cost: 6.3886 data_cost: 6.1975 ips: 1.5653 images/s
[07/04 08:53:33] ppdet.engine INFO: Epoch: [30] [315/526] learning_rate: 0.000234 loss_vfl: 0.403984 loss_bbox: 0.252688 loss_dfl: 0.279679 loss: 0.908417 eta: 9:06:32 batch_cost: 6.3668 data_cost: 6.1672 ips: 1.5706 images/s
[07/04 08:54:07] ppdet.engine INFO: Epoch: [30] [320/526] learning_rate: 0.000234 loss_vfl: 0.372247 loss_bbox: 0.196899 loss_dfl: 0.280508 loss: 0.849654 eta: 9:05:57 batch_cost: 6.6134 data_cost: 6.4064 ips: 1.5121 images/s
[07/04 08:54:38] ppdet.engine INFO: Epoch: [30] [325/526] learning_rate: 0.000234 loss_vfl: 0.354984 loss_bbox: 0.189127 loss_dfl: 0.267965 loss: 0.805358 eta: 9:04:52 batch_cost: 6.2090 data_cost: 6.0066 ips: 1.6106 images/s
[07/04 08:55:10] ppdet.engine INFO: Epoch: [30] [330/526] learning_rate: 0.000234 loss_vfl: 0.333515 loss_bbox: 0.182846 loss_dfl: 0.274709 loss: 0.775315 eta: 9:03:51 batch_cost: 6.2511 data_cost: 6.0504 ips: 1.5997 images/s
[07/04 08:55:40] ppdet.engine INFO: Epoch: [30] [335/526] learning_rate: 0.000234 loss_vfl: 0.366853 loss_bbox: 0.199308 loss_dfl: 0.279395 loss: 0.831633 eta: 9:02:27 batch_cost: 5.9206 data_cost: 5.7143 ips: 1.6890 images/s
[07/04 08:56:11] ppdet.engine INFO: Epoch: [30] [340/526] learning_rate: 0.000234 loss_vfl: 0.387321 loss_bbox: 0.199890 loss_dfl: 0.253732 loss: 0.857532 eta: 9:01:18 batch_cost: 6.1094 data_cost: 5.9076 ips: 1.6368 images/s
[07/04 08:56:41] ppdet.engine INFO: Epoch: [30] [345/526] learning_rate: 0.000234 loss_vfl: 0.392649 loss_bbox: 0.204637 loss_dfl: 0.263643 loss: 0.845812 eta: 9:00:03 batch_cost: 6.0056 data_cost: 5.7992 ips: 1.6651 images/s
[07/04 08:57:14] ppdet.engine INFO: Epoch: [30] [350/526] learning_rate: 0.000234 loss_vfl: 0.414876 loss_bbox: 0.217972 loss_dfl: 0.263249 loss: 0.917983 eta: 8:59:27 batch_cost: 6.5555 data_cost: 6.3612 ips: 1.5254 images/s
[07/04 08:57:45] ppdet.engine INFO: Epoch: [30] [355/526] learning_rate: 0.000234 loss_vfl: 0.382967 loss_bbox: 0.205519 loss_dfl: 0.270750 loss: 0.849254 eta: 8:58:18 batch_cost: 6.0683 data_cost: 5.8727 ips: 1.6479 images/s
[07/04 08:58:17] ppdet.engine INFO: Epoch: [30] [360/526] learning_rate: 0.000234 loss_vfl: 0.402333 loss_bbox: 0.213123 loss_dfl: 0.265559 loss: 0.886402 eta: 8:57:30 batch_cost: 6.3577 data_cost: 6.1632 ips: 1.5729 images/s
[07/04 08:58:47] ppdet.engine INFO: Epoch: [30] [365/526] learning_rate: 0.000234 loss_vfl: 0.433499 loss_bbox: 0.210310 loss_dfl: 0.264096 loss: 0.917488 eta: 8:56:11 batch_cost: 5.9026 data_cost: 5.6989 ips: 1.6942 images/s
[07/04 08:59:19] ppdet.engine INFO: Epoch: [30] [370/526] learning_rate: 0.000234 loss_vfl: 0.422219 loss_bbox: 0.239367 loss_dfl: 0.276189 loss: 0.937775 eta: 8:55:15 batch_cost: 6.2089 data_cost: 5.9908 ips: 1.6106 images/s
[07/04 08:59:49] ppdet.engine INFO: Epoch: [30] [375/526] learning_rate: 0.000234 loss_vfl: 0.356674 loss_bbox: 0.195882 loss_dfl: 0.259575 loss: 0.820024 eta: 8:54:04 batch_cost: 5.9900 data_cost: 5.8037 ips: 1.6694 images/s
[07/04 09:00:22] ppdet.engine INFO: Epoch: [30] [380/526] learning_rate: 0.000234 loss_vfl: 0.414729 loss_bbox: 0.230593 loss_dfl: 0.266254 loss: 0.951108 eta: 8:53:30 batch_cost: 6.5421 data_cost: 6.3360 ips: 1.5286 images/s
[07/04 09:00:55] ppdet.engine INFO: Epoch: [30] [385/526] learning_rate: 0.000234 loss_vfl: 0.366323 loss_bbox: 0.225326 loss_dfl: 0.290089 loss: 0.881664 eta: 8:52:47 batch_cost: 6.3972 data_cost: 6.1945 ips: 1.5632 images/s
[07/04 09:01:26] ppdet.engine INFO: Epoch: [30] [390/526] learning_rate: 0.000234 loss_vfl: 0.375917 loss_bbox: 0.215062 loss_dfl: 0.272625 loss: 0.884654 eta: 8:51:52 batch_cost: 6.2010 data_cost: 5.9959 ips: 1.6126 images/s
[07/04 09:01:55] ppdet.engine INFO: Epoch: [30] [395/526] learning_rate: 0.000234 loss_vfl: 0.394455 loss_bbox: 0.186490 loss_dfl: 0.273544 loss: 0.877967 eta: 8:50:34 batch_cost: 5.8183 data_cost: 5.6159 ips: 1.7187 images/s
[07/04 09:02:28] ppdet.engine INFO: Epoch: [30] [400/526] learning_rate: 0.000234 loss_vfl: 0.361132 loss_bbox: 0.196059 loss_dfl: 0.284260 loss: 0.815007 eta: 8:49:50 batch_cost: 6.3548 data_cost: 6.1523 ips: 1.5736 images/s
[07/04 09:02:59] ppdet.engine INFO: Epoch: [30] [405/526] learning_rate: 0.000234 loss_vfl: 0.374947 loss_bbox: 0.219281 loss_dfl: 0.288136 loss: 0.882364 eta: 8:48:57 batch_cost: 6.1925 data_cost: 5.9572 ips: 1.6149 images/s
[07/04 09:03:31] ppdet.engine INFO: Epoch: [30] [410/526] learning_rate: 0.000234 loss_vfl: 0.352020 loss_bbox: 0.213135 loss_dfl: 0.275756 loss: 0.852460 eta: 8:48:09 batch_cost: 6.2869 data_cost: 6.0762 ips: 1.5906 images/s
[07/04 09:04:03] ppdet.engine INFO: Epoch: [30] [415/526] learning_rate: 0.000234 loss_vfl: 0.353514 loss_bbox: 0.215985 loss_dfl: 0.272461 loss: 0.815334 eta: 8:47:25 batch_cost: 6.3393 data_cost: 6.1345 ips: 1.5775 images/s
[07/04 09:04:36] ppdet.engine INFO: Epoch: [30] [420/526] learning_rate: 0.000234 loss_vfl: 0.408100 loss_bbox: 0.234703 loss_dfl: 0.269753 loss: 0.914067 eta: 8:46:48 batch_cost: 6.4527 data_cost: 6.2533 ips: 1.5497 images/s
[07/04 09:05:09] ppdet.engine INFO: Epoch: [30] [425/526] learning_rate: 0.000234 loss_vfl: 0.416435 loss_bbox: 0.224434 loss_dfl: 0.251133 loss: 0.873551 eta: 8:46:15 batch_cost: 6.5260 data_cost: 6.3345 ips: 1.5323 images/s
[07/04 09:06:10] ppdet.engine INFO: Epoch: [30] [430/526] learning_rate: 0.000234 loss_vfl: 0.389648 loss_bbox: 0.178283 loss_dfl: 0.253066 loss: 0.834921 eta: 8:51:02 batch_cost: 12.2418 data_cost: 12.0285 ips: 0.8169 images/s
[07/04 09:06:42] ppdet.engine INFO: Epoch: [30] [435/526] learning_rate: 0.000234 loss_vfl: 0.378850 loss_bbox: 0.219586 loss_dfl: 0.282447 loss: 0.905134 eta: 8:50:12 batch_cost: 6.2870 data_cost: 6.0908 ips: 1.5906 images/s
[07/04 09:07:11] ppdet.engine INFO: Epoch: [30] [440/526] learning_rate: 0.000234 loss_vfl: 0.377423 loss_bbox: 0.202711 loss_dfl: 0.251702 loss: 0.819281 eta: 8:48:54 batch_cost: 5.7638 data_cost: 5.5583 ips: 1.7350 images/s
[07/04 09:07:45] ppdet.engine INFO: Epoch: [30] [445/526] learning_rate: 0.000234 loss_vfl: 0.340947 loss_bbox: 0.208815 loss_dfl: 0.263789 loss: 0.829212 eta: 8:48:29 batch_cost: 6.7249 data_cost: 6.5214 ips: 1.4870 images/s
[07/04 09:08:19] ppdet.engine INFO: Epoch: [30] [450/526] learning_rate: 0.000234 loss_vfl: 0.306914 loss_bbox: 0.183233 loss_dfl: 0.270282 loss: 0.737697 eta: 8:48:02 batch_cost: 6.7086 data_cost: 6.5032 ips: 1.4906 images/s
[07/04 09:08:54] ppdet.engine INFO: Epoch: [30] [455/526] learning_rate: 0.000234 loss_vfl: 0.366436 loss_bbox: 0.203972 loss_dfl: 0.281986 loss: 0.825535 eta: 8:47:44 batch_cost: 6.8709 data_cost: 6.6673 ips: 1.4554 images/s
[07/04 09:09:26] ppdet.engine INFO: Epoch: [30] [460/526] learning_rate: 0.000234 loss_vfl: 0.369893 loss_bbox: 0.228326 loss_dfl: 0.275160 loss: 0.857507 eta: 8:46:56 batch_cost: 6.2900 data_cost: 6.0841 ips: 1.5898 images/s
[07/04 09:09:58] ppdet.engine INFO: Epoch: [30] [465/526] learning_rate: 0.000234 loss_vfl: 0.398390 loss_bbox: 0.233455 loss_dfl: 0.284600 loss: 0.902023 eta: 8:46:08 batch_cost: 6.3034 data_cost: 6.1091 ips: 1.5865 images/s
[07/04 09:10:29] ppdet.engine INFO: Epoch: [30] [470/526] learning_rate: 0.000234 loss_vfl: 0.359512 loss_bbox: 0.193861 loss_dfl: 0.266186 loss: 0.828418 eta: 8:45:11 batch_cost: 6.1119 data_cost: 5.9059 ips: 1.6361 images/s
[07/04 09:11:01] ppdet.engine INFO: Epoch: [30] [475/526] learning_rate: 0.000234 loss_vfl: 0.344352 loss_bbox: 0.201831 loss_dfl: 0.268511 loss: 0.862905 eta: 8:44:26 batch_cost: 6.3307 data_cost: 6.1250 ips: 1.5796 images/s
[07/04 09:11:33] ppdet.engine INFO: Epoch: [30] [480/526] learning_rate: 0.000234 loss_vfl: 0.360266 loss_bbox: 0.195175 loss_dfl: 0.266284 loss: 0.811731 eta: 8:43:37 batch_cost: 6.2581 data_cost: 6.0601 ips: 1.5979 images/s
[07/04 09:12:02] ppdet.engine INFO: Epoch: [30] [485/526] learning_rate: 0.000234 loss_vfl: 0.391112 loss_bbox: 0.260875 loss_dfl: 0.273799 loss: 0.925785 eta: 8:42:31 batch_cost: 5.8835 data_cost: 5.6703 ips: 1.6997 images/s
[07/04 09:12:35] ppdet.engine INFO: Epoch: [30] [490/526] learning_rate: 0.000234 loss_vfl: 0.340247 loss_bbox: 0.188914 loss_dfl: 0.263015 loss: 0.800877 eta: 8:41:54 batch_cost: 6.4934 data_cost: 6.2919 ips: 1.5400 images/s
[07/04 09:13:07] ppdet.engine INFO: Epoch: [30] [495/526] learning_rate: 0.000234 loss_vfl: 0.388295 loss_bbox: 0.221719 loss_dfl: 0.288300 loss: 0.906224 eta: 8:41:02 batch_cost: 6.1651 data_cost: 5.9585 ips: 1.6220 images/s
[07/04 09:13:43] ppdet.engine INFO: Epoch: [30] [500/526] learning_rate: 0.000234 loss_vfl: 0.404059 loss_bbox: 0.200618 loss_dfl: 0.277728 loss: 0.872636 eta: 8:40:57 batch_cost: 7.1494 data_cost: 6.9588 ips: 1.3987 images/s
[07/04 09:14:21] ppdet.engine INFO: Epoch: [30] [505/526] learning_rate: 0.000234 loss_vfl: 0.434132 loss_bbox: 0.267540 loss_dfl: 0.274427 loss: 0.960191 eta: 8:41:13 batch_cost: 7.5900 data_cost: 7.3898 ips: 1.3175 images/s
[07/04 09:14:54] ppdet.engine INFO: Epoch: [30] [510/526] learning_rate: 0.000234 loss_vfl: 0.365376 loss_bbox: 0.216388 loss_dfl: 0.262516 loss: 0.851588 eta: 8:40:34 batch_cost: 6.4613 data_cost: 6.2501 ips: 1.5477 images/s
[07/04 09:15:27] ppdet.engine INFO: Epoch: [30] [515/526] learning_rate: 0.000234 loss_vfl: 0.377622 loss_bbox: 0.189161 loss_dfl: 0.261540 loss: 0.805966 eta: 8:39:57 batch_cost: 6.4716 data_cost: 6.2723 ips: 1.5452 images/s
[07/04 09:16:26] ppdet.engine INFO: Epoch: [30] [520/526] learning_rate: 0.000234 loss_vfl: 0.342163 loss_bbox: 0.164112 loss_dfl: 0.269315 loss: 0.778167 eta: 8:43:19 batch_cost: 11.7493 data_cost: 11.5312 ips: 0.8511 images/s
[07/04 09:16:57] ppdet.engine INFO: Epoch: [30] [525/526] learning_rate: 0.000234 loss_vfl: 0.409647 loss_bbox: 0.213941 loss_dfl: 0.277686 loss: 0.868590 eta: 8:42:25 batch_cost: 6.1562 data_cost: 5.9479 ips: 1.6244 images/s
[07/04 09:17:05] ppdet.utils.checkpoint INFO: Save checkpoint: output/picodet_m_416_coco_lcnet
loading annotations into memory...
Done (t=0.52s)
creating index...
index created!
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
[07/04 09:22:02] ppdet.engine INFO: Eval iter: 0
[07/04 09:31:21] ppdet.engine INFO: Eval iter: 100
[07/04 09:33:51] ppdet.metrics.metrics INFO: The bbox result is saved to bbox.json.
loading annotations into memory...
Done (t=0.04s)
creating index...
index created!
[07/04 09:33:53] ppdet.metrics.coco_utils INFO: Start evaluate...
Loading and preparing results...
DONE (t=0.88s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.81s).
Accumulating evaluation results...
DONE (t=0.16s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.861
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.988
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.772
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.870
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.885
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.885
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.885
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.809
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.895
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
[07/04 09:33:55] ppdet.engine INFO: Total sample number: 1000, averge FPS: 1.4042449080827668
[07/04 09:33:55] ppdet.engine INFO: Best test bbox ap is 0.861.
[07/04 09:34:09] ppdet.utils.checkpoint INFO: Save checkpoint: output/picodet_m_416_coco_lcnet
[07/04 09:34:10] ppdet.engine INFO: Epoch: [31] [ 0/526] learning_rate: 0.000234 loss_vfl: 0.409647 loss_bbox: 0.213941 loss_dfl: 0.269499 loss: 0.868590 eta: 8:41:21 batch_cost: 4.9662 data_cost: 4.7598 ips: 2.0136 images/s
[07/04 09:34:20] ppdet.engine INFO: Epoch: [31] [ 5/526] learning_rate: 0.000234 loss_vfl: 0.378815 loss_bbox: 0.230606 loss_dfl: 0.285081 loss: 0.894373 eta: 8:37:19 batch_cost: 1.8999 data_cost: 1.6849 ips: 5.2635 images/s
However, the PP-YOLO model does not work, and it generates the error like that below. After "Save checkpoint: output/ppyolo_r50vd_dcn_1x_coco", the scripts continue but it does not generate anything.
/usr/local/lib/python3.7/dist-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if data.dtype == np.object:
/usr/local/lib/python3.7/dist-packages/scipy/fft/__init__.py:97: DeprecationWarning: The module numpy.dual is deprecated. Instead of using dual, use the functions directly from numpy or scipy.
from numpy.dual import register_func
/usr/local/lib/python3.7/dist-packages/scipy/sparse/sputils.py:17: DeprecationWarning: `np.typeDict` is a deprecated alias for `np.sctypeDict`.
supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
/usr/local/lib/python3.7/dist-packages/scipy/special/orthogonal.py:81: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around, int,
loading annotations into memory...
Done (t=1.25s)
creating index...
index created!
W0704 07:56:05.869805 3037 gpu_context.cc:278] Please NOTE: device: 0, GPU Compute Capability: 6.0, Driver API Version: 11.2, Runtime API Version: 10.2
W0704 07:56:06.230222 3037 gpu_context.cc:306] device: 0, cuDNN Version: 7.6.
[07/04 07:56:23] ppdet.utils.checkpoint INFO: Finish resuming model weights: output/ppyolo_r50vd_dcn_1x_coco/6.pdparams
[07/04 07:56:28] ppdet.engine INFO: Epoch: [7] [ 0/526] learning_rate: 0.000092 loss_xy: 0.271238 loss_wh: 0.357589 loss_iou: 1.576589 loss_iou_aware: 0.466314 loss_obj: 0.966710 loss_cls: 0.038763 loss: 3.677203 eta: 2:15:35 batch_cost: 0.6725 data_cost: 0.0002 ips: 14.8699 images/s
[07/04 07:58:19] ppdet.engine INFO: Epoch: [7] [ 5/526] learning_rate: 0.000092 loss_xy: 0.393540 loss_wh: 0.393296 loss_iou: 1.853384 loss_iou_aware: 0.507917 loss_obj: 1.164704 loss_cls: 0.027172 loss: 4.602396 eta: 2 days, 14:31:10 batch_cost: 22.1995 data_cost: 21.5795 ips: 0.4505 images/s
[07/04 08:00:05] ppdet.engine INFO: Epoch: [7] [ 10/526] learning_rate: 0.000092 loss_xy: 0.296190 loss_wh: 0.355718 loss_iou: 1.808403 loss_iou_aware: 0.511291 loss_obj: 1.258633 loss_cls: 0.036853 loss: 4.278323 eta: 2 days, 18:16:28 batch_cost: 21.0889 data_cost: 20.6761 ips: 0.4742 images/s
[07/04 08:01:51] ppdet.engine INFO: Epoch: [7] [ 15/526] learning_rate: 0.000092 loss_xy: 0.349579 loss_wh: 0.397204 loss_iou: 1.813698 loss_iou_aware: 0.490712 loss_obj: 0.934151 loss_cls: 0.027935 loss: 3.974364 eta: 2 days, 19:48:32 batch_cost: 21.2266 data_cost: 20.8666 ips: 0.4711 images/s
[07/04 08:03:32] ppdet.engine INFO: Epoch: [7] [ 20/526] learning_rate: 0.000093 loss_xy: 0.266105 loss_wh: 0.413637 loss_iou: 1.843661 loss_iou_aware: 0.492841 loss_obj: 0.869180 loss_cls: 0.028634 loss: 4.009541 eta: 2 days, 19:38:12 batch_cost: 20.0227 data_cost: 19.5911 ips: 0.4994 images/s
[07/04 08:05:10] ppdet.engine INFO: Epoch: [7] [ 25/526] learning_rate: 0.000093 loss_xy: 0.342779 loss_wh: 0.388728 loss_iou: 1.959213 loss_iou_aware: 0.528961 loss_obj: 1.474920 loss_cls: 0.036803 loss: 4.570692 eta: 2 days, 19:14:28 batch_cost: 19.5898 data_cost: 19.1491 ips: 0.5105 images/s
[07/04 08:06:51] ppdet.engine INFO: Epoch: [7] [ 30/526] learning_rate: 0.000093 loss_xy: 0.262813 loss_wh: 0.490076 loss_iou: 2.170886 loss_iou_aware: 0.535854 loss_obj: 0.599896 loss_cls: 0.022922 loss: 4.201983 eta: 2 days, 19:18:15 batch_cost: 20.2186 data_cost: 19.7713 ips: 0.4946 images/s
[07/04 08:08:28] ppdet.engine INFO: Epoch: [7] [ 35/526] learning_rate: 0.000093 loss_xy: 0.354492 loss_wh: 0.440776 loss_iou: 1.925000 loss_iou_aware: 0.505434 loss_obj: 1.267373 loss_cls: 0.032808 loss: 4.320576 eta: 2 days, 18:51:40 batch_cost: 19.1853 data_cost: 18.7586 ips: 0.5212 images/s
[07/04 08:10:07] ppdet.engine INFO: Epoch: [7] [ 40/526] learning_rate: 0.000093 loss_xy: 0.290053 loss_wh: 0.384202 loss_iou: 1.844284 loss_iou_aware: 0.509619 loss_obj: 1.169575 loss_cls: 0.034189 loss: 4.214235 eta: 2 days, 18:47:09 batch_cost: 19.8371 data_cost: 19.3097 ips: 0.5041 images/s
[07/04 08:11:43] ppdet.engine INFO: Epoch: [7] [ 45/526] learning_rate: 0.000093 loss_xy: 0.388575 loss_wh: 0.415760 loss_iou: 1.850632 loss_iou_aware: 0.503393 loss_obj: 1.254367 loss_cls: 0.054199 loss: 4.597940 eta: 2 days, 18:28:53 batch_cost: 19.1796 data_cost: 18.6028 ips: 0.5214 images/s
[07/04 08:13:16] ppdet.engine INFO: Epoch: [7] [ 50/526] learning_rate: 0.000093 loss_xy: 0.322385 loss_wh: 0.408355 loss_iou: 1.852846 loss_iou_aware: 0.482248 loss_obj: 1.192866 loss_cls: 0.032046 loss: 4.015693 eta: 2 days, 17:59:02 batch_cost: 18.4240 data_cost: 17.9292 ips: 0.5428 images/s
[07/04 08:14:52] ppdet.engine INFO: Epoch: [7] [ 55/526] learning_rate: 0.000093 loss_xy: 0.365895 loss_wh: 0.344703 loss_iou: 1.800770 loss_iou_aware: 0.487615 loss_obj: 0.812750 loss_cls: 0.038883 loss: 4.197926 eta: 2 days, 17:48:06 batch_cost: 19.1982 data_cost: 18.6566 ips: 0.5209 images/s
[07/04 08:16:39] ppdet.engine INFO: Epoch: [7] [ 60/526] learning_rate: 0.000094 loss_xy: 0.323396 loss_wh: 0.356192 loss_iou: 1.771033 loss_iou_aware: 0.495836 loss_obj: 0.977654 loss_cls: 0.024881 loss: 4.188312 eta: 2 days, 18:12:15 batch_cost: 21.2381 data_cost: 20.7056 ips: 0.4709 images/s
[07/04 08:18:24] ppdet.engine INFO: Epoch: [7] [ 65/526] learning_rate: 0.000094 loss_xy: 0.302803 loss_wh: 0.403184 loss_iou: 1.620388 loss_iou_aware: 0.476786 loss_obj: 1.081181 loss_cls: 0.025496 loss: 4.067637 eta: 2 days, 18:28:49 batch_cost: 20.9976 data_cost: 20.3531 ips: 0.4762 images/s
[07/04 08:20:03] ppdet.engine INFO: Epoch: [7] [ 70/526] learning_rate: 0.000094 loss_xy: 0.272057 loss_wh: 0.359453 loss_iou: 1.717737 loss_iou_aware: 0.512510 loss_obj: 1.106217 loss_cls: 0.029591 loss: 3.957222 eta: 2 days, 18:26:15 batch_cost: 19.8250 data_cost: 19.2783 ips: 0.5044 images/s
[07/04 08:21:40] ppdet.engine INFO: Epoch: [7] [ 75/526] learning_rate: 0.000094 loss_xy: 0.364607 loss_wh: 0.509280 loss_iou: 2.173105 loss_iou_aware: 0.538300 loss_obj: 1.016085 loss_cls: 0.031052 loss: 4.744166 eta: 2 days, 18:16:59 batch_cost: 19.3082 data_cost: 18.8394 ips: 0.5179 images/s
[07/04 08:23:09] ppdet.engine INFO: Epoch: [7] [ 80/526] learning_rate: 0.000094 loss_xy: 0.257277 loss_wh: 0.375538 loss_iou: 1.660879 loss_iou_aware: 0.457092 loss_obj: 0.781248 loss_cls: 0.025709 loss: 3.604205 eta: 2 days, 17:48:01 batch_cost: 17.6373 data_cost: 17.1693 ips: 0.5670 images/s
[07/04 08:24:47] ppdet.engine INFO: Epoch: [7] [ 85/526] learning_rate: 0.000094 loss_xy: 0.338342 loss_wh: 0.438676 loss_iou: 1.810882 loss_iou_aware: 0.521993 loss_obj: 1.391615 loss_cls: 0.038322 loss: 4.830496 eta: 2 days, 17:45:34 batch_cost: 19.6407 data_cost: 19.0641 ips: 0.5091 images/s
[07/04 08:26:29] ppdet.engine INFO: Epoch: [7] [ 90/526] learning_rate: 0.000094 loss_xy: 0.297272 loss_wh: 0.411607 loss_iou: 1.937959 loss_iou_aware: 0.492738 loss_obj: 1.045178 loss_cls: 0.032997 loss: 4.195816 eta: 2 days, 17:49:35 batch_cost: 20.2217 data_cost: 19.7197 ips: 0.4945 images/s
[07/04 08:28:05] ppdet.engine INFO: Epoch: [7] [ 95/526] learning_rate: 0.000094 loss_xy: 0.281842 loss_wh: 0.503617 loss_iou: 2.080297 loss_iou_aware: 0.541769 loss_obj: 1.209590 loss_cls: 0.034395 loss: 4.584342 eta: 2 days, 17:42:49 batch_cost: 19.2440 data_cost: 18.6377 ips: 0.5196 images/s
[07/04 08:29:40] ppdet.engine INFO: Epoch: [7] [100/526] learning_rate: 0.000095 loss_xy: 0.358479 loss_wh: 0.559437 loss_iou: 2.222184 loss_iou_aware: 0.561517 loss_obj: 1.193535 loss_cls: 0.028179 loss: 4.959227 eta: 2 days, 17:32:36 batch_cost: 18.8426 data_cost: 18.2427 ips: 0.5307 images/s
[07/04 08:31:20] ppdet.engine INFO: Epoch: [7] [105/526] learning_rate: 0.000095 loss_xy: 0.290664 loss_wh: 0.389840 loss_iou: 1.862712 loss_iou_aware: 0.503922 loss_obj: 1.080857 loss_cls: 0.030670 loss: 4.402097 eta: 2 days, 17:33:49 batch_cost: 19.9694 data_cost: 19.5400 ips: 0.5008 images/s
[07/04 08:32:52] ppdet.engine INFO: Epoch: [7] [110/526] learning_rate: 0.000095 loss_xy: 0.270563 loss_wh: 0.424142 loss_iou: 1.926599 loss_iou_aware: 0.529753 loss_obj: 0.971601 loss_cls: 0.027508 loss: 4.074944 eta: 2 days, 17:20:02 batch_cost: 18.3311 data_cost: 17.7899 ips: 0.5455 images/s
[07/04 08:34:31] ppdet.engine INFO: Epoch: [7] [115/526] learning_rate: 0.000095 loss_xy: 0.336742 loss_wh: 0.445517 loss_iou: 1.844308 loss_iou_aware: 0.523903 loss_obj: 1.162706 loss_cls: 0.035103 loss: 4.854972 eta: 2 days, 17:19:32 batch_cost: 19.7514 data_cost: 19.2809 ips: 0.5063 images/s
[07/04 08:36:01] ppdet.engine INFO: Epoch: [7] [120/526] learning_rate: 0.000095 loss_xy: 0.323625 loss_wh: 0.443975 loss_iou: 1.987566 loss_iou_aware: 0.531336 loss_obj: 0.864106 loss_cls: 0.032928 loss: 4.180026 eta: 2 days, 17:04:18 batch_cost: 17.9772 data_cost: 17.4612 ips: 0.5563 images/s
[07/04 08:37:37] ppdet.engine INFO: Epoch: [7] [125/526] learning_rate: 0.000095 loss_xy: 0.272251 loss_wh: 0.446770 loss_iou: 1.835055 loss_iou_aware: 0.502560 loss_obj: 0.952061 loss_cls: 0.028709 loss: 4.316224 eta: 2 days, 16:58:23 batch_cost: 19.0160 data_cost: 18.5340 ips: 0.5259 images/s
[07/04 08:39:10] ppdet.engine INFO: Epoch: [7] [130/526] learning_rate: 0.000095 loss_xy: 0.320515 loss_wh: 0.504043 loss_iou: 2.068436 loss_iou_aware: 0.558140 loss_obj: 1.086174 loss_cls: 0.024959 loss: 4.700398 eta: 2 days, 16:50:02 batch_cost: 18.6520 data_cost: 18.1442 ips: 0.5361 images/s
[07/04 08:40:48] ppdet.engine INFO: Epoch: [7] [135/526] learning_rate: 0.000095 loss_xy: 0.277923 loss_wh: 0.415701 loss_iou: 1.783135 loss_iou_aware: 0.500629 loss_obj: 1.064106 loss_cls: 0.024428 loss: 4.172996 eta: 2 days, 16:47:50 batch_cost: 19.4251 data_cost: 18.8585 ips: 0.5148 images/s
[07/04 08:42:18] ppdet.engine INFO: Epoch: [7] [140/526] learning_rate: 0.000096 loss_xy: 0.261334 loss_wh: 0.397305 loss_iou: 1.819752 loss_iou_aware: 0.508419 loss_obj: 0.813551 loss_cls: 0.034020 loss: 4.046906 eta: 2 days, 16:35:10 batch_cost: 17.9363 data_cost: 17.4196 ips: 0.5575 images/s
[07/04 08:43:57] ppdet.engine INFO: Epoch: [7] [145/526] learning_rate: 0.000096 loss_xy: 0.267708 loss_wh: 0.439971 loss_iou: 1.937807 loss_iou_aware: 0.516805 loss_obj: 0.881077 loss_cls: 0.022074 loss: 4.369938 eta: 2 days, 16:36:33 batch_cost: 19.8855 data_cost: 19.3884 ips: 0.5029 images/s
[07/04 08:45:29] ppdet.engine INFO: Epoch: [7] [150/526] learning_rate: 0.000096 loss_xy: 0.302159 loss_wh: 0.410837 loss_iou: 1.829268 loss_iou_aware: 0.522165 loss_obj: 0.884524 loss_cls: 0.030697 loss: 4.217772 eta: 2 days, 16:26:45 batch_cost: 18.2189 data_cost: 17.7389 ips: 0.5489 images/s
[07/04 08:46:56] ppdet.engine INFO: Epoch: [7] [155/526] learning_rate: 0.000096 loss_xy: 0.294403 loss_wh: 0.449907 loss_iou: 1.951491 loss_iou_aware: 0.511063 loss_obj: 1.005861 loss_cls: 0.031593 loss: 4.264506 eta: 2 days, 16:12:21 batch_cost: 17.4135 data_cost: 16.9068 ips: 0.5743 images/s
[07/04 08:48:28] ppdet.engine INFO: Epoch: [7] [160/526] learning_rate: 0.000096 loss_xy: 0.333069 loss_wh: 0.455826 loss_iou: 1.911201 loss_iou_aware: 0.523360 loss_obj: 1.250967 loss_cls: 0.037812 loss: 4.597150 eta: 2 days, 16:03:59 batch_cost: 18.2594 data_cost: 17.7629 ips: 0.5477 images/s
[07/04 08:49:48] ppdet.engine INFO: Epoch: [7] [165/526] learning_rate: 0.000096 loss_xy: 0.285064 loss_wh: 0.460953 loss_iou: 1.938991 loss_iou_aware: 0.524561 loss_obj: 1.481674 loss_cls: 0.030693 loss: 4.903224 eta: 2 days, 15:42:21 batch_cost: 15.9772 data_cost: 15.4923 ips: 0.6259 images/s
[07/04 08:51:28] ppdet.engine INFO: Epoch: [7] [170/526] learning_rate: 0.000096 loss_xy: 0.296580 loss_wh: 0.438477 loss_iou: 1.945454 loss_iou_aware: 0.527978 loss_obj: 1.300317 loss_cls: 0.024111 loss: 4.631711 eta: 2 days, 15:44:28 batch_cost: 19.8611 data_cost: 19.4522 ips: 0.5035 images/s
[07/04 08:53:04] ppdet.engine INFO: Epoch: [7] [175/526] learning_rate: 0.000096 loss_xy: 0.261097 loss_wh: 0.409652 loss_iou: 1.876185 loss_iou_aware: 0.500499 loss_obj: 0.949409 loss_cls: 0.027298 loss: 4.010798 eta: 2 days, 15:42:46 batch_cost: 19.2197 data_cost: 18.6716 ips: 0.5203 images/s
[07/04 08:54:25] ppdet.engine INFO: Epoch: [7] [180/526] learning_rate: 0.000097 loss_xy: 0.244751 loss_wh: 0.326543 loss_iou: 1.684549 loss_iou_aware: 0.477246 loss_obj: 0.867979 loss_cls: 0.019974 loss: 3.445610 eta: 2 days, 15:24:38 batch_cost: 16.2259 data_cost: 15.7292 ips: 0.6163 images/s
[07/04 08:55:54] ppdet.engine INFO: Epoch: [7] [185/526] learning_rate: 0.000097 loss_xy: 0.302227 loss_wh: 0.412029 loss_iou: 2.004558 loss_iou_aware: 0.531182 loss_obj: 1.017971 loss_cls: 0.031512 loss: 4.420315 eta: 2 days, 15:14:41 batch_cost: 17.5860 data_cost: 17.0642 ips: 0.5686 images/s
[07/04 08:57:15] ppdet.engine INFO: Epoch: [7] [190/526] learning_rate: 0.000097 loss_xy: 0.277390 loss_wh: 0.375625 loss_iou: 1.787648 loss_iou_aware: 0.489875 loss_obj: 1.042646 loss_cls: 0.027224 loss: 4.044694 eta: 2 days, 14:58:15 batch_cost: 16.2555 data_cost: 15.7897 ips: 0.6152 images/s
[07/04 08:58:33] ppdet.engine INFO: Epoch: [7] [195/526] learning_rate: 0.000097 loss_xy: 0.374124 loss_wh: 0.449620 loss_iou: 1.844166 loss_iou_aware: 0.508744 loss_obj: 0.843660 loss_cls: 0.030259 loss: 4.087278 eta: 2 days, 14:38:44 batch_cost: 15.4966 data_cost: 14.9542 ips: 0.6453 images/s
[07/04 09:00:16] ppdet.engine INFO: Epoch: [7] [200/526] learning_rate: 0.000097 loss_xy: 0.343149 loss_wh: 0.526326 loss_iou: 2.347107 loss_iou_aware: 0.565511 loss_obj: 1.125885 loss_cls: 0.027738 loss: 4.880188 eta: 2 days, 14:45:17 batch_cost: 20.5930 data_cost: 20.0949 ips: 0.4856 images/s
[07/04 09:01:42] ppdet.engine INFO: Epoch: [7] [205/526] learning_rate: 0.000097 loss_xy: 0.261592 loss_wh: 0.389280 loss_iou: 1.730122 loss_iou_aware: 0.490115 loss_obj: 0.942802 loss_cls: 0.029430 loss: 3.885148 eta: 2 days, 14:34:02 batch_cost: 16.9777 data_cost: 16.4722 ips: 0.5890 images/s
[07/04 09:03:14] ppdet.engine INFO: Epoch: [7] [210/526] learning_rate: 0.000097 loss_xy: 0.261652 loss_wh: 0.361626 loss_iou: 1.876572 loss_iou_aware: 0.515457 loss_obj: 1.111798 loss_cls: 0.023007 loss: 4.210696 eta: 2 days, 14:29:55 batch_cost: 18.4018 data_cost: 17.9000 ips: 0.5434 images/s
[07/04 09:04:35] ppdet.engine INFO: Epoch: [7] [215/526] learning_rate: 0.000097 loss_xy: 0.325030 loss_wh: 0.367326 loss_iou: 1.797746 loss_iou_aware: 0.478234 loss_obj: 1.167450 loss_cls: 0.028474 loss: 3.948726 eta: 2 days, 14:15:39 batch_cost: 16.1564 data_cost: 15.6647 ips: 0.6189 images/s
[07/04 09:05:52] ppdet.engine INFO: Epoch: [7] [220/526] learning_rate: 0.000098 loss_xy: 0.310715 loss_wh: 0.437046 loss_iou: 1.924333 loss_iou_aware: 0.514065 loss_obj: 1.181035 loss_cls: 0.033214 loss: 4.502135 eta: 2 days, 13:58:45 batch_cost: 15.4405 data_cost: 15.0305 ips: 0.6476 images/s
[07/04 09:07:14] ppdet.engine INFO: Epoch: [7] [225/526] learning_rate: 0.000098 loss_xy: 0.307318 loss_wh: 0.339045 loss_iou: 1.859636 loss_iou_aware: 0.488805 loss_obj: 1.258562 loss_cls: 0.033871 loss: 4.121819 eta: 2 days, 13:46:05 batch_cost: 16.2501 data_cost: 15.7163 ips: 0.6154 images/s
[07/04 09:08:31] ppdet.engine INFO: Epoch: [7] [230/526] learning_rate: 0.000098 loss_xy: 0.335790 loss_wh: 0.391563 loss_iou: 2.035825 loss_iou_aware: 0.506498 loss_obj: 1.079076 loss_cls: 0.032927 loss: 4.267739 eta: 2 days, 13:30:21 batch_cost: 15.4150 data_cost: 14.9257 ips: 0.6487 images/s
[07/04 09:09:55] ppdet.engine INFO: Epoch: [7] [235/526] learning_rate: 0.000098 loss_xy: 0.273100 loss_wh: 0.385736 loss_iou: 1.810737 loss_iou_aware: 0.504320 loss_obj: 1.299198 loss_cls: 0.028543 loss: 4.216803 eta: 2 days, 13:20:10 batch_cost: 16.5971 data_cost: 15.9934 ips: 0.6025 images/s
[07/04 09:11:12] ppdet.engine INFO: Epoch: [7] [240/526] learning_rate: 0.000098 loss_xy: 0.376021 loss_wh: 0.472867 loss_iou: 2.046918 loss_iou_aware: 0.545379 loss_obj: 1.354846 loss_cls: 0.041773 loss: 4.938355 eta: 2 days, 13:05:16 batch_cost: 15.3609 data_cost: 14.7778 ips: 0.6510 images/s
[07/04 09:12:33] ppdet.engine INFO: Epoch: [7] [245/526] learning_rate: 0.000098 loss_xy: 0.270698 loss_wh: 0.385635 loss_iou: 1.851159 loss_iou_aware: 0.504134 loss_obj: 0.915318 loss_cls: 0.021576 loss: 3.918638 eta: 2 days, 12:54:08 batch_cost: 16.1567 data_cost: 15.6123 ips: 0.6189 images/s
[07/04 09:13:53] ppdet.engine INFO: Epoch: [7] [250/526] learning_rate: 0.000098 loss_xy: 0.304756 loss_wh: 0.413156 loss_iou: 1.817480 loss_iou_aware: 0.509742 loss_obj: 1.042281 loss_cls: 0.024843 loss: 4.121634 eta: 2 days, 12:42:27 batch_cost: 15.9175 data_cost: 15.4445 ips: 0.6282 images/s
[07/04 09:15:12] ppdet.engine INFO: Epoch: [7] [255/526] learning_rate: 0.000098 loss_xy: 0.296441 loss_wh: 0.378142 loss_iou: 1.758487 loss_iou_aware: 0.502587 loss_obj: 0.976710 loss_cls: 0.029148 loss: 4.023067 eta: 2 days, 12:30:54 batch_cost: 15.8513 data_cost: 15.2941 ips: 0.6309 images/s
[07/04 09:16:31] ppdet.engine INFO: Epoch: [7] [260/526] learning_rate: 0.000099 loss_xy: 0.302066 loss_wh: 0.363873 loss_iou: 1.888663 loss_iou_aware: 0.510169 loss_obj: 0.877994 loss_cls: 0.025846 loss: 3.763185 eta: 2 days, 12:19:08 batch_cost: 15.6881 data_cost: 15.2634 ips: 0.6374 images/s
[07/04 09:17:48] ppdet.engine INFO: Epoch: [7] [265/526] learning_rate: 0.000099 loss_xy: 0.284156 loss_wh: 0.423852 loss_iou: 1.969575 loss_iou_aware: 0.519264 loss_obj: 0.938604 loss_cls: 0.027907 loss: 4.515782 eta: 2 days, 12:06:23 batch_cost: 15.3162 data_cost: 14.9079 ips: 0.6529 images/s
[07/04 09:19:02] ppdet.engine INFO: Epoch: [7] [270/526] learning_rate: 0.000099 loss_xy: 0.321137 loss_wh: 0.434120 loss_iou: 1.981202 loss_iou_aware: 0.535011 loss_obj: 1.103608 loss_cls: 0.028343 loss: 4.492757 eta: 2 days, 11:52:08 batch_cost: 14.7838 data_cost: 14.3053 ips: 0.6764 images/s
[07/04 09:20:58] ppdet.engine INFO: Epoch: [7] [275/526] learning_rate: 0.000099 loss_xy: 0.297710 loss_wh: 0.374889 loss_iou: 1.719362 loss_iou_aware: 0.480011 loss_obj: 1.066309 loss_cls: 0.022990 loss: 3.727151 eta: 2 days, 12:07:38 batch_cost: 22.9907 data_cost: 22.4361 ips: 0.4350 images/s
[07/04 09:22:23] ppdet.engine INFO: Epoch: [7] [280/526] learning_rate: 0.000099 loss_xy: 0.300287 loss_wh: 0.445249 loss_iou: 1.892323 loss_iou_aware: 0.518732 loss_obj: 1.241344 loss_cls: 0.021275 loss: 4.325629 eta: 2 days, 12:01:33 batch_cost: 17.0099 data_cost: 16.4547 ips: 0.5879 images/s
[07/04 09:23:40] ppdet.engine INFO: Epoch: [7] [285/526] learning_rate: 0.000099 loss_xy: 0.318457 loss_wh: 0.433496 loss_iou: 2.020114 loss_iou_aware: 0.520272 loss_obj: 1.071694 loss_cls: 0.028833 loss: 4.433629 eta: 2 days, 11:50:14 batch_cost: 15.4368 data_cost: 14.8970 ips: 0.6478 images/s
[07/04 09:25:00] ppdet.engine INFO: Epoch: [7] [290/526] learning_rate: 0.000099 loss_xy: 0.254801 loss_wh: 0.425040 loss_iou: 1.802317 loss_iou_aware: 0.508445 loss_obj: 0.953223 loss_cls: 0.023918 loss: 3.953820 eta: 2 days, 11:40:22 batch_cost: 15.7683 data_cost: 15.3503 ips: 0.6342 images/s
[07/04 09:26:13] ppdet.engine INFO: Epoch: [7] [295/526] learning_rate: 0.000099 loss_xy: 0.328503 loss_wh: 0.424514 loss_iou: 2.008031 loss_iou_aware: 0.535249 loss_obj: 0.927587 loss_cls: 0.024442 loss: 4.536455 eta: 2 days, 11:26:58 batch_cost: 14.6182 data_cost: 14.1191 ips: 0.6841 images/s
[07/04 09:27:54] ppdet.engine INFO: Epoch: [7] [300/526] learning_rate: 0.000100 loss_xy: 0.326333 loss_wh: 0.362505 loss_iou: 1.984050 loss_iou_aware: 0.516304 loss_obj: 1.194836 loss_cls: 0.026523 loss: 4.335548 eta: 2 days, 11:32:07 batch_cost: 20.1691 data_cost: 19.7483 ips: 0.4958 images/s
[07/04 09:29:54] ppdet.engine INFO: Epoch: [7] [305/526] learning_rate: 0.000100 loss_xy: 0.359196 loss_wh: 0.549035 loss_iou: 2.009509 loss_iou_aware: 0.518590 loss_obj: 1.044420 loss_cls: 0.022281 loss: 4.509370 eta: 2 days, 11:49:12 batch_cost: 23.9580 data_cost: 23.5868 ips: 0.4174 images/s
[07/04 09:31:20] ppdet.engine INFO: Epoch: [7] [310/526] learning_rate: 0.000100 loss_xy: 0.307913 loss_wh: 0.334253 loss_iou: 1.817642 loss_iou_aware: 0.485536 loss_obj: 0.968255 loss_cls: 0.021530 loss: 4.017389 eta: 2 days, 11:43:58 batch_cost: 17.0872 data_cost: 16.6231 ips: 0.5852 images/s
[07/04 09:32:56] ppdet.engine INFO: Epoch: [7] [315/526] learning_rate: 0.000100 loss_xy: 0.320267 loss_wh: 0.418962 loss_iou: 1.932071 loss_iou_aware: 0.513946 loss_obj: 1.005213 loss_cls: 0.031163 loss: 4.379160 eta: 2 days, 11:45:20 batch_cost: 19.1686 data_cost: 18.5957 ips: 0.5217 images/s
[07/04 09:34:13] ppdet.engine INFO: Epoch: [7] [320/526] learning_rate: 0.000100 loss_xy: 0.345757 loss_wh: 0.446112 loss_iou: 1.939461 loss_iou_aware: 0.510864 loss_obj: 1.503500 loss_cls: 0.034992 loss: 4.843706 eta: 2 days, 11:34:55 batch_cost: 15.3495 data_cost: 14.8307 ips: 0.6515 images/s
[07/04 09:35:34] ppdet.engine INFO: Epoch: [7] [325/526] learning_rate: 0.000100 loss_xy: 0.304388 loss_wh: 0.358780 loss_iou: 1.702022 loss_iou_aware: 0.490853 loss_obj: 1.189819 loss_cls: 0.024433 loss: 3.943646 eta: 2 days, 11:26:45 batch_cost: 16.0001 data_cost: 15.5196 ips: 0.6250 images/s
[07/04 09:36:51] ppdet.engine INFO: Epoch: [7] [330/526] learning_rate: 0.000100 loss_xy: 0.299712 loss_wh: 0.402002 loss_iou: 1.856949 loss_iou_aware: 0.502581 loss_obj: 1.058779 loss_cls: 0.027956 loss: 4.215559 eta: 2 days, 11:17:04 batch_cost: 15.4246 data_cost: 14.9509 ips: 0.6483 images/s
[07/04 09:38:12] ppdet.engine INFO: Epoch: [7] [335/526] learning_rate: 0.000100 loss_xy: 0.239440 loss_wh: 0.376075 loss_iou: 1.680766 loss_iou_aware: 0.508127 loss_obj: 0.761994 loss_cls: 0.020704 loss: 3.391821 eta: 2 days, 11:10:01 batch_cost: 16.2350 data_cost: 15.7449 ips: 0.6160 images/s
[07/04 09:39:28] ppdet.engine INFO: Epoch: [7] [340/526] learning_rate: 0.000100 loss_xy: 0.340304 loss_wh: 0.410194 loss_iou: 2.171657 loss_iou_aware: 0.547689 loss_obj: 1.093696 loss_cls: 0.020441 loss: 4.606133 eta: 2 days, 10:59:33 batch_cost: 14.9926 data_cost: 14.4086 ips: 0.6670 images/s
[07/04 09:41:06] ppdet.engine INFO: Epoch: [7] [345/526] learning_rate: 0.000100 loss_xy: 0.370058 loss_wh: 0.394630 loss_iou: 1.780612 loss_iou_aware: 0.504826 loss_obj: 1.263272 loss_cls: 0.036595 loss: 4.239148 eta: 2 days, 11:02:28 batch_cost: 19.6233 data_cost: 19.1833 ips: 0.5096 images/s
[07/04 09:42:24] ppdet.engine INFO: Epoch: [7] [350/526] learning_rate: 0.000100 loss_xy: 0.295433 loss_wh: 0.375704 loss_iou: 1.638628 loss_iou_aware: 0.481048 loss_obj: 0.834188 loss_cls: 0.030682 loss: 3.879297 eta: 2 days, 10:53:56 batch_cost: 15.5653 data_cost: 14.9037 ips: 0.6425 images/s
[07/04 09:43:43] ppdet.engine INFO: Epoch: [7] [355/526] learning_rate: 0.000100 loss_xy: 0.331520 loss_wh: 0.398464 loss_iou: 1.847210 loss_iou_aware: 0.484037 loss_obj: 1.020255 loss_cls: 0.026583 loss: 4.020402 eta: 2 days, 10:46:01 batch_cost: 15.7150 data_cost: 15.1785 ips: 0.6363 images/s
[07/04 09:45:09] ppdet.engine INFO: Epoch: [7] [360/526] learning_rate: 0.000100 loss_xy: 0.392244 loss_wh: 0.509356 loss_iou: 2.207922 loss_iou_aware: 0.555670 loss_obj: 0.962765 loss_cls: 0.031678 loss: 4.449707 eta: 2 days, 10:41:59 batch_cost: 17.0837 data_cost: 16.5275 ips: 0.5854 images/s
[07/04 09:46:30] ppdet.engine INFO: Epoch: [7] [365/526] learning_rate: 0.000100 loss_xy: 0.356287 loss_wh: 0.450955 loss_iou: 1.979756 loss_iou_aware: 0.526763 loss_obj: 1.359337 loss_cls: 0.030232 loss: 4.683675 eta: 2 days, 10:35:32 batch_cost: 16.1464 data_cost: 15.5787 ips: 0.6193 images/s
[07/04 09:47:48] ppdet.engine INFO: Epoch: [7] [370/526] learning_rate: 0.000100 loss_xy: 0.278520 loss_wh: 0.497630 loss_iou: 2.021318 loss_iou_aware: 0.524387 loss_obj: 0.841166 loss_cls: 0.019115 loss: 4.222310 eta: 2 days, 10:27:40 batch_cost: 15.5616 data_cost: 15.0782 ips: 0.6426 images/s
[07/04 09:49:09] ppdet.engine INFO: Epoch: [7] [375/526] learning_rate: 0.000100 loss_xy: 0.278704 loss_wh: 0.372895 loss_iou: 1.831522 loss_iou_aware: 0.504282 loss_obj: 0.992580 loss_cls: 0.034275 loss: 4.029595 eta: 2 days, 10:21:11 batch_cost: 16.0230 data_cost: 15.4811 ips: 0.6241 images/s
[07/04 09:50:36] ppdet.engine INFO: Epoch: [7] [380/526] learning_rate: 0.000100 loss_xy: 0.338182 loss_wh: 0.434440 loss_iou: 1.876887 loss_iou_aware: 0.521846 loss_obj: 1.153687 loss_cls: 0.045839 loss: 4.690042 eta: 2 days, 10:18:26 batch_cost: 17.4334 data_cost: 16.8767 ips: 0.5736 images/s
[07/04 09:51:49] ppdet.engine INFO: Epoch: [7] [385/526] learning_rate: 0.000100 loss_xy: 0.248263 loss_wh: 0.384693 loss_iou: 1.915816 loss_iou_aware: 0.498569 loss_obj: 1.190078 loss_cls: 0.026199 loss: 4.364306 eta: 2 days, 10:08:15 batch_cost: 14.4721 data_cost: 14.0581 ips: 0.6910 images/s
[07/04 09:53:17] ppdet.engine INFO: Epoch: [7] [390/526] learning_rate: 0.000100 loss_xy: 0.325607 loss_wh: 0.389441 loss_iou: 1.814340 loss_iou_aware: 0.478424 loss_obj: 0.989821 loss_cls: 0.037373 loss: 4.097196 eta: 2 days, 10:05:50 batch_cost: 17.5010 data_cost: 17.0451 ips: 0.5714 images/s
[07/04 09:54:33] ppdet.engine INFO: Epoch: [7] [395/526] learning_rate: 0.000100 loss_xy: 0.267582 loss_wh: 0.366212 loss_iou: 1.740673 loss_iou_aware: 0.474284 loss_obj: 0.783790 loss_cls: 0.031453 loss: 4.243313 eta: 2 days, 9:58:03 batch_cost: 15.3064 data_cost: 14.8691 ips: 0.6533 images/s
[07/04 09:55:45] ppdet.engine INFO: Epoch: [7] [400/526] learning_rate: 0.000100 loss_xy: 0.331384 loss_wh: 0.403433 loss_iou: 1.862186 loss_iou_aware: 0.513111 loss_obj: 1.094553 loss_cls: 0.041456 loss: 4.334839 eta: 2 days, 9:47:55 batch_cost: 14.2775 data_cost: 13.7824 ips: 0.7004 images/s
[07/04 09:56:57] ppdet.engine INFO: Epoch: [7] [405/526] learning_rate: 0.000100 loss_xy: 0.324505 loss_wh: 0.365570 loss_iou: 1.724869 loss_iou_aware: 0.471305 loss_obj: 1.085927 loss_cls: 0.038073 loss: 3.856627 eta: 2 days, 9:38:09 batch_cost: 14.3350 data_cost: 13.7870 ips: 0.6976 images/s
[07/04 09:58:19] ppdet.engine INFO: Epoch: [7] [410/526] learning_rate: 0.000100 loss_xy: 0.313151 loss_wh: 0.331072 loss_iou: 1.792507 loss_iou_aware: 0.495526 loss_obj: 0.929585 loss_cls: 0.024885 loss: 3.602784 eta: 2 days, 9:33:14 batch_cost: 16.2931 data_cost: 15.8511 ips: 0.6138 images/s
[07/04 09:59:29] ppdet.engine INFO: Epoch: [7] [415/526] learning_rate: 0.000100 loss_xy: 0.251054 loss_wh: 0.400270 loss_iou: 1.779956 loss_iou_aware: 0.498480 loss_obj: 1.173726 loss_cls: 0.022959 loss: 4.318279 eta: 2 days, 9:23:09 batch_cost: 14.0465 data_cost: 13.5949 ips: 0.7119 images/s
[07/04 10:00:47] ppdet.engine INFO: Epoch: [7] [420/526] learning_rate: 0.000100 loss_xy: 0.287021 loss_wh: 0.426930 loss_iou: 1.749973 loss_iou_aware: 0.490117 loss_obj: 1.003443 loss_cls: 0.024965 loss: 3.954142 eta: 2 days, 9:16:27 batch_cost: 15.4250 data_cost: 14.8234 ips: 0.6483 images/s
[07/04 10:02:02] ppdet.engine INFO: Epoch: [7] [425/526] learning_rate: 0.000100 loss_xy: 0.324225 loss_wh: 0.457792 loss_iou: 1.916178 loss_iou_aware: 0.540017 loss_obj: 1.322351 loss_cls: 0.035252 loss: 4.611326 eta: 2 days, 9:08:40 batch_cost: 14.8883 data_cost: 14.2352 ips: 0.6717 images/s
[07/04 10:03:45] ppdet.engine INFO: Epoch: [7] [430/526] learning_rate: 0.000100 loss_xy: 0.271839 loss_wh: 0.428785 loss_iou: 1.930393 loss_iou_aware: 0.525617 loss_obj: 0.992150 loss_cls: 0.026406 loss: 3.970448 eta: 2 days, 9:14:09 batch_cost: 20.7109 data_cost: 20.2307 ips: 0.4828 images/s
[07/04 10:05:02] ppdet.engine INFO: Epoch: [7] [435/526] learning_rate: 0.000100 loss_xy: 0.253771 loss_wh: 0.457005 loss_iou: 2.026963 loss_iou_aware: 0.526612 loss_obj: 1.207673 loss_cls: 0.021741 loss: 4.575372 eta: 2 days, 9:07:13 batch_cost: 15.2098 data_cost: 14.7445 ips: 0.6575 images/s
[07/04 10:06:18] ppdet.engine INFO: Epoch: [7] [440/526] learning_rate: 0.000100 loss_xy: 0.273718 loss_wh: 0.371457 loss_iou: 1.711582 loss_iou_aware: 0.500316 loss_obj: 1.095438 loss_cls: 0.032815 loss: 4.214133 eta: 2 days, 9:00:08 batch_cost: 15.0809 data_cost: 14.5061 ips: 0.6631 images/s
[07/04 10:07:34] ppdet.engine INFO: Epoch: [7] [445/526] learning_rate: 0.000100 loss_xy: 0.351868 loss_wh: 0.449821 loss_iou: 2.028580 loss_iou_aware: 0.528968 loss_obj: 0.839146 loss_cls: 0.030612 loss: 4.226998 eta: 2 days, 8:53:31 batch_cost: 15.2354 data_cost: 14.7676 ips: 0.6564 images/s
[07/04 10:08:53] ppdet.engine INFO: Epoch: [7] [450/526] learning_rate: 0.000100 loss_xy: 0.285920 loss_wh: 0.373788 loss_iou: 1.781815 loss_iou_aware: 0.499203 loss_obj: 0.868353 loss_cls: 0.024865 loss: 4.251136 eta: 2 days, 8:47:54 batch_cost: 15.6484 data_cost: 15.1028 ips: 0.6390 images/s
[07/04 10:10:16] ppdet.engine INFO: Epoch: [7] [455/526] learning_rate: 0.000100 loss_xy: 0.339106 loss_wh: 0.368719 loss_iou: 1.665999 loss_iou_aware: 0.474975 loss_obj: 0.784573 loss_cls: 0.029952 loss: 3.682681 eta: 2 days, 8:44:17 batch_cost: 16.5439 data_cost: 15.9818 ips: 0.6045 images/s
[07/04 10:11:25] ppdet.engine INFO: Epoch: [7] [460/526] learning_rate: 0.000100 loss_xy: 0.251786 loss_wh: 0.378192 loss_iou: 1.864195 loss_iou_aware: 0.483405 loss_obj: 0.957796 loss_cls: 0.026653 loss: 3.787965 eta: 2 days, 8:35:08 batch_cost: 13.8853 data_cost: 13.4254 ips: 0.7202 images/s
[07/04 10:12:40] ppdet.engine INFO: Epoch: [7] [465/526] learning_rate: 0.000100 loss_xy: 0.286353 loss_wh: 0.404571 loss_iou: 1.750444 loss_iou_aware: 0.503677 loss_obj: 1.218117 loss_cls: 0.033367 loss: 4.183507 eta: 2 days, 8:28:20 batch_cost: 14.9357 data_cost: 14.4423 ips: 0.6695 images/s
[07/04 10:14:21] ppdet.engine INFO: Epoch: [7] [470/526] learning_rate: 0.000100 loss_xy: 0.320658 loss_wh: 0.449462 loss_iou: 1.972115 loss_iou_aware: 0.539170 loss_obj: 1.225012 loss_cls: 0.039561 loss: 4.532922 eta: 2 days, 8:32:06 batch_cost: 20.0154 data_cost: 19.4809 ips: 0.4996 images/s
[07/04 10:15:37] ppdet.engine INFO: Epoch: [7] [475/526] learning_rate: 0.000100 loss_xy: 0.283869 loss_wh: 0.339919 loss_iou: 1.651963 loss_iou_aware: 0.474857 loss_obj: 0.907367 loss_cls: 0.030523 loss: 3.888017 eta: 2 days, 8:25:51 batch_cost: 15.1474 data_cost: 14.6123 ips: 0.6602 images/s
[07/04 10:16:54] ppdet.engine INFO: Epoch: [7] [480/526] learning_rate: 0.000100 loss_xy: 0.277359 loss_wh: 0.431755 loss_iou: 2.062310 loss_iou_aware: 0.538239 loss_obj: 0.830686 loss_cls: 0.027108 loss: 4.164532 eta: 2 days, 8:20:12 batch_cost: 15.3964 data_cost: 14.9636 ips: 0.6495 images/s
[07/04 10:18:11] ppdet.engine INFO: Epoch: [7] [485/526] learning_rate: 0.000100 loss_xy: 0.340683 loss_wh: 0.480706 loss_iou: 2.033728 loss_iou_aware: 0.525150 loss_obj: 0.899671 loss_cls: 0.025439 loss: 4.208438 eta: 2 days, 8:14:38 batch_cost: 15.3943 data_cost: 14.9145 ips: 0.6496 images/s
[07/04 10:20:02] ppdet.engine INFO: Epoch: [7] [490/526] learning_rate: 0.000100 loss_xy: 0.277140 loss_wh: 0.292697 loss_iou: 1.549559 loss_iou_aware: 0.444487 loss_obj: 0.753578 loss_cls: 0.024200 loss: 3.569586 eta: 2 days, 8:22:25 batch_cost: 22.1215 data_cost: 21.6274 ips: 0.4520 images/s
[07/04 10:21:17] ppdet.engine INFO: Epoch: [7] [495/526] learning_rate: 0.000100 loss_xy: 0.333376 loss_wh: 0.335529 loss_iou: 1.688137 loss_iou_aware: 0.490739 loss_obj: 1.095548 loss_cls: 0.030452 loss: 3.860460 eta: 2 days, 8:15:53 batch_cost: 14.8795 data_cost: 14.3070 ips: 0.6721 images/s
[07/04 10:22:28] ppdet.engine INFO: Epoch: [7] [500/526] learning_rate: 0.000100 loss_xy: 0.272487 loss_wh: 0.337801 loss_iou: 1.844177 loss_iou_aware: 0.507398 loss_obj: 0.817930 loss_cls: 0.023127 loss: 3.775109 eta: 2 days, 8:08:08 batch_cost: 14.1955 data_cost: 13.6942 ips: 0.7044 images/s
[07/04 10:23:58] ppdet.engine INFO: Epoch: [7] [505/526] learning_rate: 0.000100 loss_xy: 0.265068 loss_wh: 0.342254 loss_iou: 1.812132 loss_iou_aware: 0.487518 loss_obj: 0.958714 loss_cls: 0.016438 loss: 3.927074 eta: 2 days, 8:07:40 batch_cost: 17.9371 data_cost: 17.4474 ips: 0.5575 images/s
[07/04 10:25:12] ppdet.engine INFO: Epoch: [7] [510/526] learning_rate: 0.000100 loss_xy: 0.262330 loss_wh: 0.394822 loss_iou: 1.784417 loss_iou_aware: 0.479115 loss_obj: 0.786947 loss_cls: 0.018559 loss: 3.610360 eta: 2 days, 8:00:53 batch_cost: 14.6124 data_cost: 14.1532 ips: 0.6844 images/s
[07/04 10:26:29] ppdet.engine INFO: Epoch: [7] [515/526] learning_rate: 0.000100 loss_xy: 0.302016 loss_wh: 0.495736 loss_iou: 2.059801 loss_iou_aware: 0.523866 loss_obj: 1.135634 loss_cls: 0.022543 loss: 4.354139 eta: 2 days, 7:55:39 batch_cost: 15.3787 data_cost: 14.9810 ips: 0.6503 images/s
[07/04 10:27:42] ppdet.engine INFO: Epoch: [7] [520/526] learning_rate: 0.000100 loss_xy: 0.258651 loss_wh: 0.380378 loss_iou: 1.677820 loss_iou_aware: 0.480484 loss_obj: 0.961978 loss_cls: 0.028227 loss: 3.891515 eta: 2 days, 7:49:07 batch_cost: 14.6321 data_cost: 14.1662 ips: 0.6834 images/s
[07/04 10:28:54] ppdet.engine INFO: Epoch: [7] [525/526] learning_rate: 0.000100 loss_xy: 0.368762 loss_wh: 0.374008 loss_iou: 1.781887 loss_iou_aware: 0.496053 loss_obj: 0.843844 loss_cls: 0.025339 loss: 3.943705 eta: 2 days, 7:41:54 batch_cost: 14.2157 data_cost: 13.6629 ips: 0.7034 images/s
[07/04 10:28:59] reader WARNING: fail to map sample transform [Decode_15e5d1] with error: [Errno 5] Input/output error and stack:
Traceback (most recent call last):
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/reader.py", line 54, in __call__
data = f(data)
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/transform/operators.py", line 103, in __call__
sample[i] = self.apply(sample[i], context)
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/transform/operators.py", line 123, in apply
sample['image'] = f.read()
OSError: [Errno 5] Input/output error
Exception in thread Thread-2:
Traceback (most recent call last):
File "/usr/lib/python3.7/threading.py", line 926, in _bootstrap_inner
self.run()
File "/usr/lib/python3.7/threading.py", line 870, in run
self._target(*self._args, **self._kwargs)
File "/usr/local/lib/python3.7/dist-packages/paddle/fluid/dataloader/dataloader_iter.py", line 216, in _thread_loop
self._thread_done_event)
File "/usr/local/lib/python3.7/dist-packages/paddle/fluid/dataloader/fetcher.py", line 121, in fetch
data.append(self.dataset[idx])
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/source/dataset.py", line 91, in __getitem__
return self.transform(roidb)
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/reader.py", line 60, in __call__
raise e
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/reader.py", line 54, in __call__
data = f(data)
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/transform/operators.py", line 103, in __call__
sample[i] = self.apply(sample[i], context)
File "/content/drive/MyDrive/UIT/Four_Year/Term_2/DS505.M21/Code/PaddleDetection/ppdet/data/transform/operators.py", line 123, in apply
sample['image'] = f.read()
OSError: [Errno 5] Input/output error
[07/04 10:29:19] ppdet.utils.checkpoint INFO: Save checkpoint: output/ppyolo_r50vd_dcn_1x_coco
loading annotations into memory...
Done (t=0.90s)
creating index...
index created!
loading annotations into memory...
Done (t=0.02s)
creating index...
index created!
[07/04 10:36:36] ppdet.engine INFO: Eval iter: 0
[07/04 10:50:25] ppdet.engine INFO: Eval iter: 100
[07/04 10:53:58] ppdet.metrics.metrics INFO: The bbox result is saved to bbox.json.
loading annotations into memory...
Done (t=0.85s)
creating index...
index created!
[07/04 10:54:01] ppdet.metrics.coco_utils INFO: Start evaluate...
Loading and preparing results...
DONE (t=0.06s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.85s).
Accumulating evaluation results...
DONE (t=0.16s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.771
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.971
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.666
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.797
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.817
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.838
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.838
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.793
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.844
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
[07/04 10:54:02] ppdet.engine INFO: Total sample number: 1000, averge FPS: 0.9547666875704138
[07/04 10:54:02] ppdet.engine INFO: Best test bbox ap is 0.771.
[07/04 10:54:32] ppdet.utils.checkpoint INFO: Save checkpoint: output/ppyolo_r50vd_dcn_1x_coco
问题确认 Search before asking
bug描述 Describe the Bug
I train the ppyolo_r50vd_dcn_1x_coco model using Google Colab environment. I use the python command:
!python tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml --eval
And the error generates after thatI use PASCAL VOC format to train model. Does the bug above have any effect on the model's training? Thank you for your time to support me.
复现环境 Environment
Paddlepaddle-gpu==2.3.0 PaddleDetection: Release/2.4 Python 3.7.13 CUDA Version: 11.2 cuDNN Version: 7.6.
是否愿意提交PR Are you willing to submit a PR?