Closed yinggo closed 4 years ago
我在coco数据集上验证了下faster_rcnn_r50_vd_fpn_ciou_loss_1x是能够正常跑的。由于是rcnn系列模型,你的配置文件中的num_class需要增加背景类,同时在dataset中将with_background设置为true
@jerrywgz 您好,我增加了背景类测试了一下
num_classes: 20
TrainReader:和EvalReader下修改
with_background: true
但还是出现同样的报错额……
是否我上述配置文件中有其他地方修改不当?
我用这个模型在voc数据集上做了下适配,训练预测是可以跑通的,使用的release/0.3版本的检测库
architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_diou_loss_1x/model_final
metric: VOC
num_classes: 21
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
variant: d
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms: MultiClassDiouNMS
bbox_loss: DiouLoss
MultiClassDiouNMS:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
DiouLoss:
loss_weight: 10.0
is_cls_agnostic: false
use_complete_iou_loss: true
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
_READER_: '../faster_fpn_reader.yml'
TrainReader:
batch_size: 2
dataset:
!VOCDataSet
dataset_dir: /paddle/wangguanzhong/data/voc
anno_path: trainval.txt
with_background: true
use_default_label: true
EvalReader:
inputs_def:
fields: ['image', 'im_info', 'im_id', 'im_shape', 'gt_bbox' , 'gt_class', 'is_difficult']
dataset:
!VOCDataSet
dataset_dir: /paddle/wangguanzhong/data/voc
anno_path: test.txt
with_background: true
use_default_label: true
感谢!已解决
之前也测试过一些模型,都是在VOC数据格式下做的,但这个就跑不通。。求指教