Closed rexzhengzhihong closed 10 months ago
python tools/eval.py \ > -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout_table.yml \ > -o weights=/home/DiskA/zncsPython/table_det/model/output_table/picodet_lcnet_x1_0_layout_table/best_model W0508 09:32:15.859894 466581 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.6, Driver API Version: 11.6, Runtime API Version: 11.6 W0508 09:32:15.862742 466581 gpu_resources.cc:91] device: 0, cuDNN Version: 8.4. loading annotations into memory... Done (t=0.00s) creating index... index created! [05/08 09:32:16] ppdet.data.source.coco INFO: Load [7 samples valid, 0 samples invalid] in file /home/DiskA/zncsPython/table_det/coco_data/annotations/instance_val.json. [05/08 09:32:16] ppdet.utils.checkpoint INFO: Finish loading model weights: /home/DiskA/zncsPython/table_det/model/output_table/picodet_lcnet_x1_0_layout_table/best_model.pdparams [05/08 09:32:18] ppdet.engine INFO: Eval iter: 0 [05/08 09:32:18] ppdet.metrics.metrics INFO: The bbox result is saved to bbox.json. loading annotations into memory... Done (t=0.00s) creating index... index created! [05/08 09:32:18] ppdet.metrics.coco_utils INFO: Start evaluate... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.00s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 1.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 1.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 1.000 [05/08 09:32:18] ppdet.engine INFO: Total sample number: 7, average FPS: 4.0349411184269295
_BASE_: [ '../../../../runtime.yml', '../../_base_/picodet_esnet.yml', '../../_base_/optimizer_100e.yml', '../../_base_/picodet_640_reader.yml', ] pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/LCNet_x1_0_pretrained.pdparams save_dir: /home/DiskA/zncsPython/table_det/model/output #pretrain_weights: https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table.pdparams #save_dir: /home/DiskA/zncsPython/table_det/model/output_table #pretrain_weights: https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams #save_dir: /home/DiskA/zncsPython/table_det/model/output_layout weights: output/picodet_lcnet_x1_0_layout/model_final find_unused_parameters: True use_ema: true cycle_epoch: 10 snapshot_epoch: 1 epoch: 200 PicoDet: backbone: LCNet neck: CSPPAN head: PicoHead LCNet: scale: 1.0 feature_maps: [3, 4, 5] metric: COCO num_classes: 1 TrainDataset: !COCODataSet image_dir: train anno_path: annotations/instance_train.json dataset_dir: /home/DiskA/zncsPython/table_det/coco_data/ data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet image_dir: val anno_path: annotations/instance_val.json dataset_dir: /home/DiskA/zncsPython/table_det/coco_data/ TestDataset: !ImageFolder anno_path: /home/DiskA/zncsPython/table_det/coco_data/annotations/instance_val.json worker_num: 2 eval_height: &eval_height 800 eval_width: &eval_width 608 eval_size: &eval_size [*eval_height, *eval_width] TrainReader: sample_transforms: - Decode: {} - RandomCrop: {} - RandomFlip: {prob: 0.5} - RandomDistort: {} batch_transforms: - BatchRandomResize: {target_size: [[768, 576], [800, 608], [832, 640]], random_size: True, random_interp: True, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_size: 24 shuffle: true drop_last: true collate_batch: false EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: [800, 608], keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 8 shuffle: false TestReader: inputs_def: image_shape: [1, 3, 800, 608] sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: [800, 608], keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 1 shuffle: false
{ "images": [ { "height": 660, "width": 1520, "id": 1, "file_name": "gdzc_v1-04.jpg" }, { "height": 565, "width": 1869, "id": 2, "file_name": "gdzc_v1-18.jpg" }, { "height": 630, "width": 1517, "id": 3, "file_name": "gdzc_v1-05.jpg" }, { "height": 613, "width": 1801, "id": 4, "file_name": "gdzc_v1-01.jpg" }, { "height": 577, "width": 1514, "id": 5, "file_name": "gdzc_v1-08.jpg" }, { "height": 434, "width": 1517, "id": 6, "file_name": "gdzc_v1-06.jpg" }, { "height": 613, "width": 1801, "id": 7, "file_name": "gdzcljzj_v1_4.png" }, { "height": 648, "width": 1801, "id": 8, "file_name": "gdzcljzj_v1_5.png" }, { "height": 683, "width": 1801, "id": 9, "file_name": "gdzc_v1-19.jpg" }, { "height": 683, "width": 1801, "id": 10, "file_name": "gdzcljzj_v1_3.png" }, { "height": 613, "width": 1801, "id": 11, "file_name": "gdzc_v1-13.jpg" }, { "height": 494, "width": 1090, "id": 12, "file_name": "gdzc_v1-25.jpg" }, { "height": 613, "width": 1801, "id": 13, "file_name": "gdzc_v1-12.jpg" }, { "height": 576, "width": 1520, "id": 14, "file_name": "gdzc_v1-07.jpg" }, { "height": 494, "width": 1088, "id": 15, "file_name": "gdzc_v1-24.jpg" }, { "height": 636, "width": 1088, "id": 16, "file_name": "gdzc_v1-20.jpg" }, { "height": 683, "width": 1801, "id": 17, "file_name": "gdzc_v1-14.jpg" }, { "height": 683, "width": 1801, "id": 18, "file_name": "gdzcljzj_v1_2.png" }, { "height": 494, "width": 1520, "id": 19, "file_name": "gdzc_v1-03.jpg" }, { "height": 440, "width": 1092, "id": 20, "file_name": "gdzc_v1-23.jpg" }, { "height": 684, "width": 1518, "id": 21, "file_name": "gdzc_v1-09.jpg" }, { "height": 660, "width": 1521, "id": 22, "file_name": "gdzc_v1-10.jpg" }, { "height": 572, "width": 1520, "id": 23, "file_name": "gdzc_v1-02.jpg" }, { "height": 683, "width": 1801, "id": 24, "file_name": "gdzc_v1-16.jpg" } ], "categories": [ { "supercategory": "component", "id": 1, "name": "Table" } ], "annotations": [ { "segmentation": [ [ 10.965811965811966, 78.35042735042737, 10.965811965811966, 643.3076923076924, 1508.4017094017095, 643.3076923076924, 1508.4017094017095, 78.35042735042737 ] ], "iscrowd": 0, "image_id": 1, "bbox": [ 10.965811965811966, 78.35042735042737, 1497.4358974358975, 564.957264957265 ], "area": 845987.2890642122, "category_id": 1, "id": 1 }, { "segmentation": [ [ 18.052631578947366, 107.9473684210526, 18.052631578947366, 512.1578947368421, 1854.8947368421052, 512.1578947368421, 1854.8947368421052, 107.9473684210526 ] ], "iscrowd": 0, "image_id": 2, "bbox": [ 18.052631578947366, 107.9473684210526, 1836.842105263158, 404.2105263157895 ], "area": 742470.9141274239, "category_id": 1, "id": 2 }, { "segmentation": [ [ 12.384615384615385, 77.88034188034192, 12.384615384615385, 613.7777777777778, 1507.2564102564104, 613.7777777777778, 1507.2564102564104, 77.88034188034192 ] ], "iscrowd": 0, "image_id": 3, "bbox": [ 12.384615384615385, 77.88034188034192, 1494.871794871795, 535.8974358974359 ], "area": 801097.9618671926, "category_id": 1, "id": 3 }, { "segmentation": [ [ 19.191919191919194, 100.78787878787881, 19.191919191919194, 483.61616161616166, 1781.8181818181818, 483.61616161616166, 1781.8181818181818, 100.78787878787881 ] ], "iscrowd": 0, "image_id": 4, "bbox": [ 19.191919191919194, 100.78787878787881, 1762.6262626262626, 382.82828282828285 ], "area": 674783.185389246, "category_id": 1, "id": 4 }, { "segmentation": [ [ 13.094017094017094, 75.66666666666669, 13.094017094017094, 556.0085470085471, 1507.1111111111113, 556.0085470085471, 1507.1111111111113, 75.66666666666669 ] ], "iscrowd": 0, "image_id": 5, "bbox": [ 13.094017094017094, 75.66666666666669, 1494.0170940170942, 480.3418803418804 ], "area": 717638.980203083, "category_id": 1, "id": 5 }, { "segmentation": [ [ 8.965811965811966, 76.46153846153851, 8.965811965811966, 418.34188034188037, 1506.4017094017095, 418.34188034188037, 1506.4017094017095, 76.46153846153851 ] ], "iscrowd": 0, "image_id": 6, "bbox": [ 8.965811965811966, 76.46153846153851, 1497.4358974358975, 341.88034188034186 ], "area": 511943.89655928116, "category_id": 1, "id": 6 }, { "segmentation": [ [ 21.052631578947366, 97.52631578947364, 21.052631578947366, 484.8947368421052, 1783.157894736842, 484.8947368421052, 1783.157894736842, 97.52631578947364 ] ], "iscrowd": 0, "image_id": 7, "bbox": [ 21.052631578947366, 97.52631578947364, 1762.1052631578948, 387.36842105263156 ], "area": 682583.9335180055, "category_id": 1, "id": 7 }, { "segmentation": [ [ 17.89473684210526, 101.84210526315786, 17.89473684210526, 521.8421052631578, 1783.157894736842, 521.8421052631578, 1783.157894736842, 101.84210526315786 ] ], "iscrowd": 0, "image_id": 8, "bbox": [ 17.89473684210526, 101.84210526315786, 1765.2631578947369, 419.99999999999994 ], "area": 741410.5263157894, "category_id": 1, "id": 8 }, { "segmentation": [ [ 19.191919191919194, 101.44444444444446, 19.191919191919194, 559.0202020202021, 1784.8484848484848, 559.0202020202021, 1784.8484848484848, 101.44444444444446 ] ], "iscrowd": 0, "image_id": 9, "bbox": [ 19.191919191919194, 101.44444444444446, 1765.6565656565656, 457.5757575757576 ], "area": 807921.6406489135, "category_id": 1, "id": 9 }, { "segmentation": [ [ 18.94736842105263, 99.8947368421052, 18.94736842105263, 556.7368421052631, 1782.1052631578946, 556.7368421052631, 1782.1052631578946, 99.8947368421052 ] ], "iscrowd": 0, "image_id": 10, "bbox": [ 18.94736842105263, 99.8947368421052, 1763.1578947368419, 456.8421052631579 ], "area": 805484.7645429362, "category_id": 1, "id": 10 }, { "segmentation": [ [ 16.161616161616163, 97.75757575757575, 16.161616161616163, 489.67676767676767, 1784.8484848484848, 489.67676767676767, 1784.8484848484848, 97.75757575757575 ] ], "iscrowd": 0, "image_id": 11, "bbox": [ 16.161616161616163, 97.75757575757575, 1768.6868686868686, 391.9191919191919 ], "area": 693182.3283338435, "category_id": 1, "id": 11 }, { "segmentation": [ [ 13.11042944785276, 78.23926380368096, 13.11042944785276, 473.9447852760736, 1078.1411042944785, 473.9447852760736, 1078.1411042944785, 78.23926380368096 ] ], "iscrowd": 0, "image_id": 12, "bbox": [ 13.11042944785276, 78.23926380368096, 1065.0306748466257, 395.70552147239266 ], "area": 421438.51857427834, "category_id": 1, "id": 12 }, { "segmentation": [ [ 17.171717171717173, 96.74747474747477, 17.171717171717173, 491.69696969696975, 1783.8383838383838, 491.69696969696975, 1783.8383838383838, 96.74747474747477 ] ], "iscrowd": 0, "image_id": 13, "bbox": [ 17.171717171717173, 96.74747474747477, 1766.6666666666667, 394.949494949495 ], "area": 697744.1077441078, "category_id": 1, "id": 13 }, { "segmentation": [ [ 14.384615384615385, 75.66666666666669, 14.384615384615385, 555.1538461538462, 1510.965811965812, 555.1538461538462, 1510.965811965812, 75.66666666666669 ] ], "iscrowd": 0, "image_id": 14, "bbox": [ 14.384615384615385, 75.66666666666669, 1496.5811965811965, 479.4871794871795 ], "area": 717591.496822266, "category_id": 1, "id": 14 }, { "segmentation": [ [ 13.950920245398772, 78.23926380368096, 13.950920245398772, 474.55828220858893, 1075.9141104294479, 474.55828220858893, 1075.9141104294479, 78.23926380368096 ] ], "iscrowd": 0, "image_id": 15, "bbox": [ 13.950920245398772, 78.23926380368096, 1061.9631901840492, 396.319018404908 ], "area": 420876.20911588694, "category_id": 1, "id": 15 }, { "segmentation": [ [ 17.01840490797546, 82.3680981595092, 17.01840490797546, 616.1104294478528, 1075.3006134969323, 616.1104294478528, 1075.3006134969323, 82.3680981595092 ] ], "iscrowd": 0, "image_id": 16, "bbox": [ 17.01840490797546, 82.3680981595092, 1058.2822085889568, 533.7423312883436 ], "area": 564850.013173247, "category_id": 1, "id": 16 }, { "segmentation": [ [ 19.191919191919194, 96.39393939393938, 19.191919191919194, 561.040404040404, 1784.8484848484848, 561.040404040404, 1784.8484848484848, 96.39393939393938 ] ], "iscrowd": 0, "image_id": 17, "bbox": [ 19.191919191919194, 96.39393939393938, 1765.6565656565656, 464.64646464646466 ], "area": 820406.0810121417, "category_id": 1, "id": 17 }, { "segmentation": [ [ 14.736842105263158, 97.78947368421052, 14.736842105263158, 555.6842105263157, 1784.2105263157894, 555.6842105263157, 1784.2105263157894, 97.78947368421052 ] ], "iscrowd": 0, "image_id": 18, "bbox": [ 14.736842105263158, 97.78947368421052, 1769.4736842105262, 457.8947368421052 ], "area": 810232.6869806093, "category_id": 1, "id": 18 }, { "segmentation": [ [ 15.239316239316242, 79.11111111111114, 15.239316239316242, 478.2564102564103, 1509.2564102564104, 478.2564102564103, 1509.2564102564104, 79.11111111111114 ] ], "iscrowd": 0, "image_id": 19, "bbox": [ 15.239316239316242, 79.11111111111114, 1494.0170940170942, 399.14529914529913 ], "area": 596329.8999196435, "category_id": 1, "id": 19 }, { "segmentation": [ [ 17.177914110429448, 78.84662576687117, 17.177914110429448, 417.49693251533733, 1073.6196319018404, 417.49693251533733, 1073.6196319018404, 78.84662576687117 ] ], "iscrowd": 0, "image_id": 20, "bbox": [ 17.177914110429448, 78.84662576687117, 1056.441717791411, 338.65030674846616 ], "area": 357764.31179193786, "category_id": 1, "id": 20 }, { "segmentation": [ [ 15.094017094017094, 77.52991452991455, 15.094017094017094, 666.4188034188035, 1511.6752136752139, 666.4188034188035, 1511.6752136752139, 77.52991452991455 ] ], "iscrowd": 0, "image_id": 21, "bbox": [ 15.094017094017094, 77.52991452991455, 1496.5811965811968, 588.8888888888889 ], "area": 881320.0379867048, "category_id": 1, "id": 21 }, { "segmentation": [ [ 12.675213675213676, 76.64102564102564, 12.675213675213676, 644.1623931623932, 1509.2564102564104, 644.1623931623932, 1509.2564102564104, 76.64102564102564 ] ], "iscrowd": 0, "image_id": 22, "bbox": [ 12.675213675213676, 76.64102564102564, 1496.5811965811968, 567.5213675213676 ], "area": 849341.8072905254, "category_id": 1, "id": 22 }, { "segmentation": [ [ 16.094017094017094, 78.79487179487182, 16.094017094017094, 558.2820512820514, 1508.4017094017095, 558.2820512820514, 1508.4017094017095, 78.79487179487182 ] ], "iscrowd": 0, "image_id": 23, "bbox": [ 16.094017094017094, 78.79487179487182, 1492.3076923076924, 479.48717948717956 ], "area": 715542.4063116373, "category_id": 1, "id": 23 }, { "segmentation": [ [ 20.2020202020202, 100.43434343434342, 20.2020202020202, 558.010101010101, 1785.858585858586, 558.010101010101, 1785.858585858586, 100.43434343434342 ] ], "iscrowd": 0, "image_id": 24, "bbox": [ 20.2020202020202, 100.43434343434342, 1765.6565656565658, 457.5757575757576 ], "area": 807921.6406489136, "category_id": 1, "id": 24 } ] }
没人回答吗
@thinkthinking
@thinkthinkin
@lyuwenyu
问题确认 Search before asking
请提出你的问题 Please ask your question
问题:样本为25张。评估都是1。可是预测的结果有一些是不准的。比如表格的底部范围错了,怎么优化呢?如图
评估结果
训练配置文件yml
样本数据