Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
[X] 我已经搜索过问题,但是没有找到解答。I have searched the question and found no related answer.
请提出你的问题 Please ask your question
我们需要在边缘端进行车辆跟踪检测任务,边缘服务需要消耗小,性能快。请问在PP-Vehicle快速使用文档中,超轻量模型JetSon AGX 模型的训练流程是怎样的?
我直接使用configs/ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.yml 训练时报错如下:
Traceback (most recent call last):
File "tools/train.py", line 202, in
main()
File "tools/train.py", line 198, in main
run(FLAGS, cfg)
File "tools/train.py", line 151, in run
trainer.train(FLAGS.eval)
File "/paddle/PaddleDetection/ppdet/engine/trainer.py", line 539, in train
outputs = model(data)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/nn/layer/layers.py", line 1254, in call
return self.forward(*inputs, kwargs)
File "/paddle/PaddleDetection/ppdet/modeling/architectures/meta_arch.py", line 60, in forward
out = self.get_loss()
File "/paddle/PaddleDetection/ppdet/modeling/architectures/ppyoloe.py", line 257, in get_loss
return self._forward()
File "/paddle/PaddleDetection/ppdet/modeling/architectures/ppyoloe.py", line 224, in _forward
loss = self.yolo_head(
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/nn/layer/layers.py", line 1254, in call
return self.forward(*inputs, *kwargs)
File "/paddle/PaddleDetection/ppdet/modeling/heads/ppyoloe_head.py", line 264, in forward
return self.forward_train(feats, targets, aux_pred)
File "/paddle/PaddleDetection/ppdet/modeling/heads/ppyoloe_head.py", line 198, in forward_train
return self.get_loss([
File "/paddle/PaddleDetection/ppdet/modeling/heads/ppyoloe_head.py", line 439, in get_loss
self.assigner(
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/nn/layer/layers.py", line 1254, in call
return self.forward(inputs, kwargs)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/decorator.py", line 232, in fun
return caller(func, *(extras + args), *kw)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/dygraph/base.py", line 347, in _decorate_function
return func(args, *kwargs)
File "/paddle/PaddleDetection/ppdet/modeling/assigners/task_aligned_assigner.py", line 142, in forward
is_in_gts = is_close_gt(anchor_points, gt_bboxes, num_anchors_list)
File "/paddle/PaddleDetection/ppdet/modeling/assigners/task_aligned_assigner.py", line 50, in is_close_gt
dist_ratio[dist < max_dist] = 1.
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/dygraph/tensor_patch_methods.py", line 786, in setitem
return _setitemimpl(self, item, value)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/variable_index.py", line 738, in _setitemimpl
return set_value_for_bool_tensor(var, slice_item, value)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/variable_index.py", line 858, in set_value_for_bool_tensor
cond(item.any(), lambda: idx_not_empty(var, item, value))
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/static/nn/control_flow.py", line 975, in cond
pred = pred.item()
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/dygraph/tensor_patch_methods.py", line 581, in item
scalar = self._getitem_from_offset(args)
OSError: (External) CUDA error(719), unspecified launch failure.
[Hint: 'cudaErrorLaunchFailure'. An exception occurred on the device while executing a kernel. Common causes include dereferencing an invalid device pointerand accessing out of bounds shared memory. Less common cases can be system specific - more information about these cases canbe found in the system specific user guide. This leaves the process in an inconsistent state and any further CUDA work willreturn the same error. To continue using CUDA, the process must be terminated and relaunched.] (at ../paddle/phi/backends/gpu/cuda/cuda_info.cc:267)
上面这个问题是因为预训练文件选错了。训练完后是可以使用的。
但是开启MKL加速推理的时候又报错了,请问是为什么?
DET model dir: output_inference/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle/
MOT model dir: output_inference/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle/
LANE_SEG model dir: /root/.cache/paddle/infer_weights/pp_lite_stdc2_bdd100k
----------- Model Configuration -----------
Model Arch: PPYOLOE
Transform Order:
--transform op: Resize
--transform op: NormalizeImage
--transform op: Permute
video fps: 29, frame_count: 856
Thread: 0; frame id: 0
Traceback (most recent call last):
File "deploy/pipeline/pipeline.py", line 1321, in
main()
File "deploy/pipeline/pipeline.py", line 1308, in main
pipeline.run_multithreads()
File "deploy/pipeline/pipeline.py", line 179, in run_multithreads
self.predictor.run(self.input)
File "deploy/pipeline/pipeline.py", line 533, in run
self.predict_video(input, thread_idx=thread_idx)
File "deploy/pipeline/pipeline.py", line 753, in predict_video
res = self.mot_predictor.predict_image(
File "/paddle/PaddleDetection/deploy/pptracking/python/mot_sde_infer.py", line 539, in predict_image
result = self.predict()
File "/paddle/PaddleDetection/deploy/pptracking/python/det_infer.py", line 167, in predict
self.predictor.run()
RuntimeError: could not create a primitive descriptor for a reorder primitive
问题确认 Search before asking
请提出你的问题 Please ask your question
我们需要在边缘端进行车辆跟踪检测任务,边缘服务需要消耗小,性能快。请问在PP-Vehicle快速使用文档中,超轻量模型JetSon AGX 模型的训练流程是怎样的? 我直接使用configs/ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.yml 训练时报错如下: Traceback (most recent call last): File "tools/train.py", line 202, in
main()
File "tools/train.py", line 198, in main
run(FLAGS, cfg)
File "tools/train.py", line 151, in run
trainer.train(FLAGS.eval)
File "/paddle/PaddleDetection/ppdet/engine/trainer.py", line 539, in train
outputs = model(data)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/nn/layer/layers.py", line 1254, in call
return self.forward(*inputs, kwargs)
File "/paddle/PaddleDetection/ppdet/modeling/architectures/meta_arch.py", line 60, in forward
out = self.get_loss()
File "/paddle/PaddleDetection/ppdet/modeling/architectures/ppyoloe.py", line 257, in get_loss
return self._forward()
File "/paddle/PaddleDetection/ppdet/modeling/architectures/ppyoloe.py", line 224, in _forward
loss = self.yolo_head(
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/nn/layer/layers.py", line 1254, in call
return self.forward(*inputs, *kwargs)
File "/paddle/PaddleDetection/ppdet/modeling/heads/ppyoloe_head.py", line 264, in forward
return self.forward_train(feats, targets, aux_pred)
File "/paddle/PaddleDetection/ppdet/modeling/heads/ppyoloe_head.py", line 198, in forward_train
return self.get_loss([
File "/paddle/PaddleDetection/ppdet/modeling/heads/ppyoloe_head.py", line 439, in get_loss
self.assigner(
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/nn/layer/layers.py", line 1254, in call
return self.forward(inputs, kwargs)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/decorator.py", line 232, in fun
return caller(func, *(extras + args), *kw)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/dygraph/base.py", line 347, in _decorate_function
return func(args, *kwargs)
File "/paddle/PaddleDetection/ppdet/modeling/assigners/task_aligned_assigner.py", line 142, in forward
is_in_gts = is_close_gt(anchor_points, gt_bboxes, num_anchors_list)
File "/paddle/PaddleDetection/ppdet/modeling/assigners/task_aligned_assigner.py", line 50, in is_close_gt
dist_ratio[dist < max_dist] = 1.
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/dygraph/tensor_patch_methods.py", line 786, in setitem
return _setitemimpl(self, item, value)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/variable_index.py", line 738, in _setitemimpl
return set_value_for_bool_tensor(var, slice_item, value)
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/variable_index.py", line 858, in set_value_for_bool_tensor
cond(item.any(), lambda: idx_not_empty(var, item, value))
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/static/nn/control_flow.py", line 975, in cond
pred = pred.item()
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/paddle/fluid/dygraph/tensor_patch_methods.py", line 581, in item
scalar = self._getitem_from_offset(args)
OSError: (External) CUDA error(719), unspecified launch failure.
[Hint: 'cudaErrorLaunchFailure'. An exception occurred on the device while executing a kernel. Common causes include dereferencing an invalid device pointerand accessing out of bounds shared memory. Less common cases can be system specific - more information about these cases canbe found in the system specific user guide. This leaves the process in an inconsistent state and any further CUDA work willreturn the same error. To continue using CUDA, the process must be terminated and relaunched.] (at ../paddle/phi/backends/gpu/cuda/cuda_info.cc:267)