Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
export:
post_process: True # Whether post-processing is included in the network when export model.
nms: True # Whether NMS is included in the network when export model.
benchmark: False # It is used to testing model performance, if set True, post-process and NMS will not be exported.
fuse_conv_bn: False
EvalMOTDataset:
!MOTImageFolder
dataset_dir: /root/paddlejob/workspace/train_data/datasets/mot
data_root: IKCEST/images/test/
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
anno_path: /root/paddlejob/workspace/train_data/datasets/mot/label_list.txt
TestMOTDataset:
!MOTImageFolder
dataset_dir: /root/paddlejob/workspace/train_data/datasets/mot/IKCEST/images/test/
keep_ori_im: True # set True if save visualization images or video
anno_path: /root/paddlejob/workspace/train_data/datasets/mot/label_list.txt
`
eval的时候,输出txt全空
而且有一堆warning
Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In order to avoid this problem, 0D Tensor will be changed to 1D numpy currently, but it's not correct and will be removed in release 2.6. For Tensor contain only one element, Please modify 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as possible, otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.
I0913 17:10:51.835693 264737 eager_method.cc:140] Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In order to avoid this problem, 0D Tensor will be changed to 1D numpy currently, but it's not correct and will be removed in release 2.6. For Tensor contain only one element, Please modify 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as possible, otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.
I0913 17:10:51.835812 264737 eager_method.cc:140]
问题确认 Search before asking
请提出你的问题 Please ask your question
配置文件如下 `use_gpu: true use_xpu: false use_mlu: false use_npu: false log_iter: 100 save_dir: /root/paddlejob/workspace/output
save_dir: /home/aistudio/output
snapshot_epoch: 1 print_flops: false print_params: false
Exporting the model
export: post_process: True # Whether post-processing is included in the network when export model. nms: True # Whether NMS is included in the network when export model. benchmark: False # It is used to testing model performance, if set
True
, post-process and NMS will not be exported. fuse_conv_bn: Falsemetric: MCMOT num_classes: 228
/root/paddlejob/workspace/train_data/datasets/mot
TrainDataset: !MCMOTDataSet dataset_dir: /root/paddlejob/workspace/train_data/datasets/mot # 需要更改为自己对应的文件目录下 image_lists: ['IKCEST.train'] data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide'] label_list: /root/paddlejob/workspace/train_data/datasets/mot/label_list.txt
EvalMOTDataset: !MOTImageFolder dataset_dir: /root/paddlejob/workspace/train_data/datasets/mot data_root: IKCEST/images/test/ keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT anno_path: /root/paddlejob/workspace/train_data/datasets/mot/label_list.txt
TestMOTDataset: !MOTImageFolder dataset_dir: /root/paddlejob/workspace/train_data/datasets/mot/IKCEST/images/test/ keep_ori_im: True # set True if save visualization images or video anno_path: /root/paddlejob/workspace/train_data/datasets/mot/label_list.txt
pretrain_weights: https://paddledet.bj.bcebos.com/models/centernet_dla34_140e_coco.pdparams
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNeXt101_vd_64x4d_pretrained.pdparams architecture: FairMOT for_mot: True
FairMOT: detector: CenterNet reid: FairMOTEmbeddingHead loss: FairMOTLoss tracker: JDETracker # multi-class tracker
CenterNet: backbone: ResNet neck: CenterNetDLAFPN head: CenterNetHead post_process: CenterNetPostProcess
ResNet:
for ResNeXt: groups, base_width, base_channels
depth: 101 groups: 64 base_width: 4 variant: d norm_type: bn freeze_at: 0 return_idx: [0,1,2,3] num_stages: 4 dcn_v2_stages: [1,2,3]
CenterNetDLAFPN: down_ratio: 4 last_level: 3 out_channel: 0 first_level: 0 dcn_v2: True with_sge: True
CenterNetHead: head_planes: 256 prior_bias: -2.19 regress_ltrb: False size_loss: 'L1' loss_weight: {'heatmap': 1.0, 'size': 0.1, 'offset': 1.0, 'iou': 0.0} add_iou: False
FairMOTEmbeddingHead: ch_head: 256 ch_emb: 128
CenterNetPostProcess: max_per_img: 200 down_ratio: 4 regress_ltrb: False
JDETracker: conf_thres: 0.4 tracked_thresh: 0.4 metric_type: cosine min_box_area: 0 vertical_ratio: 0 # for pedestrian use_byte: True match_thres: 0.8 low_conf_thres: 0.2
weights: /root/paddlejob/workspace/output/dla
weights: /home/aistudio/output/dla
epoch: 30 LearningRate: base_lr: 0.00025 schedulers:
OptimizerBuilder: regularizer: false optimizer: type: AdamW weight_decay: 0.0001 param_groups:
worker_num: 1 TrainReader: inputs_def: image_shape: [3, 608, 1088] sample_transforms:
EvalMOTReader: sample_transforms:
TestMOTReader: inputs_def: image_shape: [3, 608, 1088] sample_transforms:
` eval的时候,输出txt全空 而且有一堆warning Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In order to avoid this problem, 0D Tensor will be changed to 1D numpy currently, but it's not correct and will be removed in release 2.6. For Tensor contain only one element, Please modify 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as possible, otherwise 'Tensor.numpy()[0]' will raise error in release 2.6. I0913 17:10:51.835693 264737 eager_method.cc:140] Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In order to avoid this problem, 0D Tensor will be changed to 1D numpy currently, but it's not correct and will be removed in release 2.6. For Tensor contain only one element, Please modify 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as possible, otherwise 'Tensor.numpy()[0]' will raise error in release 2.6. I0913 17:10:51.835812 264737 eager_method.cc:140]