👑 Easy-to-use and powerful NLP and LLM library with 🤗 Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including 🗂Text Classification, 🔍 Neural Search, ❓ Question Answering, ℹ️ Information Extraction, 📄 Document Intelligence, 💌 Sentiment Analysis etc.
Feature request
当前似乎只有dynabert有evaluation, 但是后续的ptq, qat都没有. 能否考虑在所有策略执行完毕后进行统一的evaluation, 然后将关键信息(metrics, export model path, model size (MACs or memory footprint)) log下来并且作为return arguments返回?
Motivation
trainer.compress应该与trainer.train有类似的API. trainer.train会返还一个TrainOutput, 同时每一次evaluation都有UI显示.
Your contribution
n/a