Closed xiaozuxin closed 5 months ago
Global:
use_gpu: False
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/det_result/
save_epoch_step: 1
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [1, 10]
cal_metric_during_train: False
#改为数据集路径
pretrained_model: ./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: ./infer_img
save_res_path: ./output/det_db/predicts_db.txt
use_space_char: True
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: ResNet_vd
layers: 18
disable_se: True
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- ./train_data/det/train.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- ./train_data/det/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
这是训练的模型yml
您好,是训练自己的数据集吗?训练过程中损失是否正常下降呢?
@Sunting78 感谢,我是用 PPOCRLabel 标记自己的图片,划分数据集后,做的本地数据集训练,损失下降还不太会看,这是训练日志,能看到损失情况么。
猜测是因为: batch size = 8 train dataloader has 1 iters 这表示你的数据你数据集很小,只使用一个iteration,便可以遍历整个训练集 log_smooth_window : 20 表示log的平滑窗口是20个iteration,因此这可能就是训练时没有输出log信息的原因,以及训练效果不好的原因。 可以尝试加入更多的数据进行训练。
请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem
各位大神,有没有遇到过这样的情况,windows10 下进行自己的推断训练时, 一直显示 ppocr INFO: best metric, hmean: 0, is_float16: False 是什么原因?