Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 8
KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 8
GPU占用少的可怜,请问怎么提速?下面是我的yml代码
Global: use_gpu: true epoch_num: 50000 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec_chinese_lite_v2.0 save_epoch_step: 50
evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: pretrain_models/ch_ppocr_mobile_v1.1_det_train/best_accuracy.pdparams checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words/ch/word_1.jpg
for data or label process
character_dict_path: train_data/labels.txt max_text_length: 25 infer_mode: False use_space_char: True save_res_path: ./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 warmup_epoch: 5 regularizer: name: 'L2' factor: 0.00001
Architecture: model_type: rec algorithm: CRNN Transform: Backbone: name: MobileNetV3 scale: 0.5 model_name: small small_stride: [1, 2, 2, 2] Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 48 Head: name: CTCHead fc_decay: 0.00001
Loss: name: CTCLoss
PostProcess: name: CTCLabelDecode
Metric: name: RecMetric main_indicator: acc
Train: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: ["./train_data/train.txt"] transforms:
Eval: dataset: name: SimpleDataSet data_dir: ./train_data label_file_list: ["./train_data/test.txt"] transforms: