Closed kano201 closed 1 year ago
图片宽度改为2000,尺寸变大,训练速度就会变慢,效果查,可以排查下拉伸到这个尺寸 [3, 32, 2000],图片是不是太模糊了,或者infer过程尺寸有没有对应修改
This issue has been automatically marked as stale because it has not had recent activity. It will be closed in 7 days if no further activity occurs. Thank you for your contributions.
使用RARE模型进行蒙古文识别的训练 配置文件只修改了
evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img:
for data or label process
character_dict_path: ./train_data/dict_test.txt max_text_length: 200 infer_mode: False use_space_char: True save_res_path: ./output/rec/predicts_rare_real.txt
Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: learning_rate: 0.0005 regularizer: name: 'L2' factor: 0.00001
Architecture: model_type: rec algorithm: RARE Transform: name: TPS num_fiducial: 20 loc_lr: 0.1 model_name: small Backbone: name: MobileNetV3 scale: 0.5 model_name: large Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 96 Head: name: AttentionHead
hidden_size: 96
Loss: name: AttentionLoss
PostProcess: name: AttnLabelDecode
Metric: name: RecMetric main_indicator: acc
Train: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list:
Eval: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: