Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
This issue has been automatically marked as stale because it has not had recent activity. It will be closed in 7 days if no further activity occurs. Thank you for your contributions.
请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem
evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000] cal_metric_during_train: False pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_en/img_10.jpg save_res_path: ./output/det_db/predicts_db.txt
Architecture: name: DistillationModel algorithm: Distillation model_type: det Models: Student: return_all_feats: false model_type: det algorithm: DB Backbone: name: ResNet_vd in_channels: 3 layers: 50 Neck: name: LKPAN out_channels: 256 Head: name: DBHead kernel_list: [7,2,2] k: 50 Student2: return_all_feats: false model_type: det algorithm: DB Backbone: name: ResNet_vd in_channels: 3 layers: 50 Neck: name: LKPAN out_channels: 256 Head: name: DBHead kernel_list: [7,2,2] k: 50
Loss: name: CombinedLoss loss_config_list:
act: None
model_name_pairs: ["Student", "Student2"] key: maps
key: maps
name: DBLoss balance_loss: true main_loss_type: DiceLoss alpha: 5 beta: 10 ohem_ratio: 3
Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 warmup_epoch: 2 regularizer: name: 'L2' factor: 0
PostProcess: name: DistillationDBPostProcess model_name: ["Student", "Student2"] key: head_out thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 unclip_ratio: 1.5
Metric: name: DistillationMetric base_metric_name: DetMetric main_indicator: hmean key: "Student"
Train: dataset: name: SimpleDataSet data_dir: ./train_data/icdar2015/text_localization/ label_file_list:
Eval: dataset: name: SimpleDataSet data_dir: ./train_data/icdar2015/text_localization/ label_file_list:
image_shape: [736, 1280]
执行指令:python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \ -o Architecture.Models.Student.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \ Architecture.Models.Student2.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \ Global.save_model_dir=./output/
终端提示:ppocr warning: the pretrained params backbone.* not in model