Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc.
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/initializer.py in call(self, var, block)
360 "use_mkldnn": False
361 },
--> 362 stop_gradient=True)
363
364 if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py in append_op(self, *args, **kwargs)
3165 kwargs.get("outputs", {}), attrs
3166 if attrs else {},
-> 3167 kwargs.get("stop_gradient", False))
3168 else:
3169 from paddle.fluid.dygraph.base import param_guard
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/tracer.py in trace_op(self, type, inputs, outputs, attrs, stop_gradient)
43 self.trace(type, inputs, outputs, attrs,
44 framework._current_expected_place(), self._has_grad and
---> 45 not stop_gradient)
46
47 def train_mode(self):
Thanks for this issue. As it has been inactive for a long time, we would close it. If you has any questions, please feel free to reopen or new issue, and we will follow up and resolve it.
通过pip install paddleseg 安装默认版本 -->
model = paddleseg.models.segformer.SegFormer_B2(num_classes=4)
出错错误输出:
OSError Traceback (most recent call last) /tmp/ipykernel_202/4247776124.py in
----> 1 model = paddleseg.models.segformer.SegFormer_B2(num_classes=4)
2
3 # 设置学习率
4 base_lr = 0.05
5 lr = paddle.optimizer.lr.PolynomialDecay(base_lr, power=0.9, decay_steps=80000, end_lr=0.002)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddleseg/models/segformer.py in SegFormer_B2(kwargs) 149 def SegFormer_B2(kwargs): 150 return SegFormer( --> 151 backbone=manager.BACKBONES['MixVisionTransformer_B2'](), 152 embedding_dim=768, 153 **kwargs)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddleseg/models/backbones/mix_transformer.py in MixVisionTransformer_B2(kwargs) 540 drop_rate=0.0, 541 drop_path_rate=0.1, --> 542 kwargs) 543 544
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddleseg/models/backbones/mix_transformer.py in init(self, img_size, patch_size, in_chans, num_classes, embed_dims, num_heads, mlp_ratios, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, depths, sr_ratios, pretrained) 286 stride=4, 287 in_chans=in_chans, --> 288 embed_dim=embed_dims[0]) 289 self.patch_embed2 = OverlapPatchEmbed( 290 img_size=img_size // 4,
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddleseg/models/backbones/mix_transformer.py in init(self, img_size, patch_size, stride, in_chans, embed_dim) 227 kernel_size=patch_size, 228 stride=stride, --> 229 padding=(patch_size[0] // 2, patch_size[1] // 2)) 230 self.norm = nn.LayerNorm(embed_dim) 231
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/conv.py in init(self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format) 654 weight_attr=weight_attr, 655 bias_attr=bias_attr, --> 656 data_format=data_format) 657 658 def forward(self, x):
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/conv.py in init(self, in_channels, out_channels, kernel_size, transposed, dims, stride, padding, padding_mode, output_padding, dilation, groups, weight_attr, bias_attr, data_format) 133 shape=filter_shape, 134 attr=self._param_attr, --> 135 default_initializer=_get_default_param_initializer()) 136 self.bias = self.create_parameter( 137 attr=self._bias_attr, shape=[self._out_channels], is_bias=True)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py in create_parameter(self, shape, attr, dtype, is_bias, default_initializer) 420 temp_attr = None 421 return self._helper.create_parameter(temp_attr, shape, dtype, is_bias, --> 422 default_initializer) 423 424 @deprecated(
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layer_helper_base.py in create_parameter(self, attr, shape, dtype, is_bias, default_initializer, stop_gradient, type) 376 type=type, 377 stop_gradient=stop_gradient, --> 378 **attr._to_kwargs(with_initializer=True)) 379 else: 380 self.startup_program.global_block().create_parameter(
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py in create_parameter(self, *args, **kwargs) 3135 pass 3136 else: -> 3137 initializer(param, self) 3138 return param 3139
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/initializer.py in call(self, var, block) 360 "use_mkldnn": False 361 }, --> 362 stop_gradient=True) 363 364 if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py in append_op(self, *args, **kwargs) 3165 kwargs.get("outputs", {}), attrs 3166 if attrs else {}, -> 3167 kwargs.get("stop_gradient", False)) 3168 else: 3169 from paddle.fluid.dygraph.base import param_guard
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/tracer.py in trace_op(self, type, inputs, outputs, attrs, stop_gradient) 43 self.trace(type, inputs, outputs, attrs, 44 framework._current_expected_place(), self._has_grad and ---> 45 not stop_gradient) 46 47 def train_mode(self):
OSError: [operator < gaussian_random > error]