Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc.
W0929 10:52:04.378280 4902 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W0929 10:52:04.378324 4902 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
2022-09-29 10:52:05 [INFO] Loading pretrained model from https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet2.tar.gz
2022-09-29 10:52:05 [INFO] There are 265/265 variables loaded into STDCNet.
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:654: UserWarning: When training, we now always track global mean and variance.
"When training, we now always track global mean and variance.")
Traceback (most recent call last):
File "train.py", line 230, in
main(args)
File "train.py", line 225, in main
to_static_training=cfg.to_static_training)
File "/home/aistudio/work/PaddleSeg/paddleseg/core/train.py", line 211, in train
losses=losses)
File "/home/aistudio/work/PaddleSeg/paddleseg/core/train.py", line 55, in loss_computation
loss_list.append(coef_i loss_i(logits, labels))
File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py", line 930, in call
return self._dygraph_call_func(inputs, *kwargs)
File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py", line 915, in _dygraph_call_func
outputs = self.forward(inputs, kwargs)
File "/home/aistudio/work/PaddleSeg/paddleseg/models/losses/cross_entropy_loss.py", line 86, in forward
weight=self.weight)
File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/functional/loss.py", line 1723, in cross_entropy
label_max.item()))
ValueError: Target 160 is out of upper bound.**
/home/aistudio/work/PaddleSeg 2022-09-29 10:52:04 [INFO]
------------Environment Information------------- platform: Linux-4.15.0-140-generic-x86_64-with-debian-stretch-sid Python: 3.7.4 (default, Aug 13 2019, 20:35:49) [GCC 7.3.0] Paddle compiled with cuda: True NVCC: Build cuda_11.2.r11.2/compiler.29618528_0 cudnn: 8.2 GPUs used: 1 CUDA_VISIBLE_DEVICES: None GPU: ['GPU 0: Tesla V100-SXM2-16GB'] GCC: gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0 PaddleSeg: 2.6.0 PaddlePaddle: 2.3.2 OpenCV: 4.1.1
2022-09-29 10:52:04 [INFO]
---------------Config Information--------------- batch_size: 4 iters: 1000 loss: coef:
type: Normalize type: Dataset val_path: data/mine/valid.txt
W0929 10:52:04.378280 4902 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2 W0929 10:52:04.378324 4902 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2. 2022-09-29 10:52:05 [INFO] Loading pretrained model from https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet2.tar.gz 2022-09-29 10:52:05 [INFO] There are 265/265 variables loaded into STDCNet. /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:654: UserWarning: When training, we now always track global mean and variance. "When training, we now always track global mean and variance.") Traceback (most recent call last): File "train.py", line 230, in
main(args)
File "train.py", line 225, in main
to_static_training=cfg.to_static_training)
File "/home/aistudio/work/PaddleSeg/paddleseg/core/train.py", line 211, in train
losses=losses)
File "/home/aistudio/work/PaddleSeg/paddleseg/core/train.py", line 55, in loss_computation
loss_list.append(coef_i loss_i(logits, labels))
File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py", line 930, in call
return self._dygraph_call_func(inputs, *kwargs)
File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py", line 915, in _dygraph_call_func
outputs = self.forward(inputs, kwargs)
File "/home/aistudio/work/PaddleSeg/paddleseg/models/losses/cross_entropy_loss.py", line 86, in forward
weight=self.weight)
File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/functional/loss.py", line 1723, in cross_entropy
label_max.item()))
ValueError: Target 160 is out of upper bound.**