Open wwdok opened 3 years ago
好 收到 尽快研究下回复
我在跑CTCN时也遇到相同的问题了:
(base) root@LAB_VM:/home/PaddlePaddle/models/PaddleCV/video# bash run.sh predict CTCN ./configs/ctcn.yaml
predict CTCN ./configs/ctcn.yaml
DALI is not installed, you can improve performance if use DALI
[INFO: predict.py: 200]: Namespace(batch_size=1, config='./configs/ctcn.yaml', filelist=None, infer_topk=20, log_interval=1, model_name='CTCN', save_dir='data/predict_results', use_gpu=True, video_path='', weights=None)
[INFO: config_utils.py: 69]: ---------------- Infer Arguments ----------------
[INFO: config_utils.py: 72]: MODEL:
[INFO: config_utils.py: 74]: name:CTCN
[INFO: config_utils.py: 74]: num_classes:201
[INFO: config_utils.py: 74]: img_size:512
[INFO: config_utils.py: 74]: concept_size:402
[INFO: config_utils.py: 74]: num_anchors:7
[INFO: config_utils.py: 74]: total_num_anchors:1785
[INFO: config_utils.py: 74]: snippet_length:1
[INFO: config_utils.py: 74]: root:./data/dataset/ctcn/feats
[INFO: config_utils.py: 72]: TRAIN:
[INFO: config_utils.py: 74]: epoch:35
[INFO: config_utils.py: 74]: filelist:./data/dataset/ctcn/Activity1.3_train_rgb.listformat
[INFO: config_utils.py: 74]: rgb:senet152-201cls-rgb-70.3-5seg-331data_331img_train
[INFO: config_utils.py: 74]: flow:senet152-201cls-flow-60.9-5seg-331data_train
[INFO: config_utils.py: 74]: batch_size:16
[INFO: config_utils.py: 74]: num_threads:8
[INFO: config_utils.py: 74]: use_gpu:True
[INFO: config_utils.py: 74]: num_gpus:8
[INFO: config_utils.py: 74]: learning_rate:0.0005
[INFO: config_utils.py: 74]: learning_rate_decay:0.1
[INFO: config_utils.py: 74]: lr_decay_iter:9000
[INFO: config_utils.py: 74]: l2_weight_decay:0.0001
[INFO: config_utils.py: 74]: momentum:0.9
[INFO: config_utils.py: 72]: VALID:
[INFO: config_utils.py: 74]: filelist:./data/dataset/ctcn/Activity1.3_val_rgb.listformat
[INFO: config_utils.py: 74]: rgb:senet152-201cls-rgb-70.3-5seg-331data_331img_val
[INFO: config_utils.py: 74]: flow:senet152-201cls-flow-60.9-5seg-331data_val
[INFO: config_utils.py: 74]: batch_size:16
[INFO: config_utils.py: 74]: num_threads:8
[INFO: config_utils.py: 74]: use_gpu:True
[INFO: config_utils.py: 74]: num_gpus:8
[INFO: config_utils.py: 72]: TEST:
[INFO: config_utils.py: 74]: filelist:./data/dataset/ctcn/Activity1.3_val_rgb.listformat
[INFO: config_utils.py: 74]: rgb:senet152-201cls-rgb-70.3-5seg-331data_331img_val
[INFO: config_utils.py: 74]: flow:senet152-201cls-flow-60.9-5seg-331data_val
[INFO: config_utils.py: 74]: class_label_file:./data/dataset/ctcn/labels.txt
[INFO: config_utils.py: 74]: video_duration_file:./data/dataset/ctcn/val_duration_frame.list
[INFO: config_utils.py: 74]: batch_size:1
[INFO: config_utils.py: 74]: num_threads:1
[INFO: config_utils.py: 74]: score_thresh:0.001
[INFO: config_utils.py: 74]: nms_thresh:0.8
[INFO: config_utils.py: 74]: sigma_thresh:0.9
[INFO: config_utils.py: 74]: soft_thresh:0.004
[INFO: config_utils.py: 72]: INFER:
[INFO: config_utils.py: 74]: filelist:./data/dataset/ctcn/infer.list
[INFO: config_utils.py: 74]: rgb:senet152-201cls-rgb-70.3-5seg-331data_331img_val
[INFO: config_utils.py: 74]: flow:senet152-201cls-flow-60.9-5seg-331data_val
[INFO: config_utils.py: 74]: batch_size:1
[INFO: config_utils.py: 74]: num_threads:1
[INFO: config_utils.py: 75]: -------------------------------------------------
/root/anaconda3/lib/python3.8/site-packages/paddle/fluid/framework.py:2383: DeprecationWarning: an integer is required (got type paddle.fluid.core_avx.VarType). Implicit conversion to integers using __int__ is deprecated, and may be removed in a future version of Python.
self.desc._set_attr(name, val)
/root/anaconda3/lib/python3.8/site-packages/paddle/fluid/framework.py:2383: DeprecationWarning: an integer is required (got type paddle.fluid.core_avx.op_proto_and_checker_maker.OpRole). Implicit conversion to integers using __int__ is deprecated, and may be removed in a future version of Python.
self.desc._set_attr(name, val)
/root/anaconda3/lib/python3.8/site-packages/paddle/fluid/layers/math_op_patch.py:273: UserWarning: /home/PaddlePaddle/models/PaddleCV/video/models/ctcn/fpn_ctcn.py:76
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
warnings.warn(
W1225 02:45:15.461153 47159 device_context.cc:338] Please NOTE: device: 0, CUDA Capability: 61, Driver API Version: 11.0, Runtime API Version: 10.2
W1225 02:45:15.464532 47159 device_context.cc:346] device: 0, cuDNN Version: 8.0.
[INFO: detection_metrics.py: 68]: Resetting infer metrics...
[INFO: detection_metrics.py: 68]: Resetting infer metrics...
./data/dataset/ctcn/feats/senet152-201cls-rgb-70.3-5seg-331data_331img_val/JDg--pjY5gg.pkl
./data/dataset/ctcn/feats/senet152-201cls-flow-60.9-5seg-331data_val/JDg--pjY5gg.pkl
--------------------------------------
C++ Traceback (most recent call last):
--------------------------------------
0 paddle::framework::SignalHandle(char const*, int)
1 paddle::platform::GetCurrentTraceBackString[abi:cxx11]()
----------------------
Error Message Summary:
----------------------
FatalError: A serious error (Segmentation fault) is detected by the operating system. (at /paddle/paddle/fluid/platform/init.cc:303)
[TimeInfo: *** Aborted at 1608864329 (unix time) try "date -d @1608864329" if you are using GNU date ***]
[SignalInfo: *** SIGSEGV (@0x0) received by PID 47159 (TID 0x7fd5bc71d740) from PID 0 ***]
run.sh: line 107: 47159 Segmentation fault (core dumped) python predict.py --model_name=$name --config=$configs --log_interval=$log_interval --use_gpu=$use_gpu --video_path=''
Also got this error running with a v100 CUDA11. No idea how to fix.
Managed to get it running by upgrading to CUDA11.2 https://developer.nvidia.com/cuda-downloads and installing w/ docker:
3) sudo docker run --name ppocr --gpus all -v $PWD:/paddle --shm-size=32G --network=host -it paddlepaddle/paddle:2.0.0rc1-gpu-cuda11.0-cudnn8 /bin/bash
4) python3.8 -m pip install paddleocr
However, inference is 3.5x slower than paddleocr1.1 (installed without docker). Any ideas why this might be? Whilst the accuracy is better, the performance hit is undesirable.
大家好,我在按照这个教程运行video_tag的样例代码时,遇到了如下报错,请问有谁知道什么原因吗?谢谢!
我的电脑系统是ubuntu18.04,paddlepaddle版本是2.0.0rc0