PennyLaneAI / pennylane

PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.
https://pennylane.ai
Apache License 2.0
2.38k stars 607 forks source link

[BUG] TorchLayer doesn't work with diff_method='parameter-shift' #6078

Open CatalinaAlbornoz opened 3 months ago

CatalinaAlbornoz commented 3 months ago

Expected behavior

The TorchLayer demo should work with diff_method='parameter-shift'

Actual behavior

It throws an error.

Additional information

This question originated from Forum thread 4940.

Source code

# Demo with parameter-shift
import torch
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_moons

# Set random seeds
torch.manual_seed(42)
np.random.seed(42)

X, y = make_moons(n_samples=200, noise=0.1)
y_ = torch.unsqueeze(torch.tensor(y), 1)  # used for one-hot encoded labels
y_hot = torch.scatter(torch.zeros((200, 2)), 1, y_, 1)

c = ["#1f77b4" if y_ == 0 else "#ff7f0e" for y_ in y]  # colours for each class
plt.axis("off")
plt.scatter(X[:, 0], X[:, 1], c=c)
plt.show()

import pennylane as qml

n_qubits = 2
dev = qml.device("default.qubit", wires=n_qubits)

@qml.qnode(dev, diff_method='parameter-shift')
def qnode(inputs, weights):
    qml.AngleEmbedding(inputs, wires=range(n_qubits))
    qml.BasicEntanglerLayers(weights, wires=range(n_qubits))
    return [qml.expval(qml.PauliZ(wires=i)) for i in range(n_qubits)]

n_layers = 6
weight_shapes = {"weights": (n_layers, n_qubits)}

qlayer = qml.qnn.TorchLayer(qnode, weight_shapes)

clayer_1 = torch.nn.Linear(2, 2)
clayer_2 = torch.nn.Linear(2, 2)
softmax = torch.nn.Softmax(dim=1)
layers = [clayer_1, qlayer, clayer_2, softmax]
model = torch.nn.Sequential(*layers)

opt = torch.optim.SGD(model.parameters(), lr=0.2)
loss = torch.nn.L1Loss()

X = torch.tensor(X, requires_grad=True).float()
y_hot = y_hot.float()

batch_size = 5
batches = 200 // batch_size

data_loader = torch.utils.data.DataLoader(
    list(zip(X, y_hot)), batch_size=5, shuffle=True, drop_last=True
)

epochs = 6

for epoch in range(epochs):

    running_loss = 0

    for xs, ys in data_loader:
        opt.zero_grad()

        loss_evaluated = loss(model(xs), ys)
        loss_evaluated.backward()

        opt.step()

        running_loss += loss_evaluated

    avg_loss = running_loss / batches
    print("Average loss over epoch {}: {:.4f}".format(epoch + 1, avg_loss))

y_pred = model(X)
predictions = torch.argmax(y_pred, axis=1).detach().numpy()

correct = [1 if p == p_true else 0 for p, p_true in zip(predictions, y)]
accuracy = sum(correct) / len(correct)
print(f"Accuracy: {accuracy * 100}%")

Tracebacks

---------------------------------------------------------------------------
NotImplementedError                       Traceback (most recent call last)
<ipython-input-8-d039678a60e4> in <cell line: 13>()
     19 
     20         loss_evaluated = loss(model(xs), ys)
---> 21         loss_evaluated.backward()
     22 
     23         opt.step()

11 frames
/usr/local/lib/python3.10/dist-packages/torch/_tensor.py in backward(self, gradient, retain_graph, create_graph, inputs)
    523                 inputs=inputs,
    524             )
--> 525         torch.autograd.backward(
    526             self, gradient, retain_graph, create_graph, inputs=inputs
    527         )

/usr/local/lib/python3.10/dist-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
    265     # some Python versions print out the first line of a multi-line function
    266     # calls in the traceback and some print out the last line
--> 267     _engine_run_backward(
    268         tensors,
    269         grad_tensors_,

/usr/local/lib/python3.10/dist-packages/torch/autograd/graph.py in _engine_run_backward(t_outputs, *args, **kwargs)
    742         unregister_hooks = _register_logging_hooks_on_whole_graph(t_outputs)
    743     try:
--> 744         return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
    745             t_outputs, *args, **kwargs
    746         )  # Calls into the C++ engine to run the backward pass

/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py in apply(self, *args)
    299             )
    300         user_fn = vjp_fn if vjp_fn is not Function.vjp else backward_fn
--> 301         return user_fn(self, *args)
    302 
    303     def apply_jvp(self, *args):

/usr/local/lib/python3.10/dist-packages/pennylane/workflow/interfaces/torch.py in new_backward(ctx, *flat_grad_outputs)
     99     def new_backward(ctx, *flat_grad_outputs):
    100         grad_outputs = pytree.tree_unflatten(flat_grad_outputs, ctx._out_struct)
--> 101         grad_inputs = orig_bw(ctx, *grad_outputs)
    102         # None corresponds to the diff of out_struct_holder
    103         return (None,) + tuple(grad_inputs)

/usr/local/lib/python3.10/dist-packages/pennylane/workflow/interfaces/torch.py in backward(ctx, *dy)
    184         # dL/dz convention of PennyLane, autograd and jax. This converts between the formats
    185         dy = _recursive_conj(dy)
--> 186         vjps = ctx.jpc.compute_vjp(ctx.tapes, dy)
    187         # split tensor into separate entries
    188         unpacked_vjps = []

/usr/local/lib/python3.10/dist-packages/pennylane/workflow/jacobian_products.py in compute_vjp(self, tapes, dy)
    297             return _compute_vjps(jacs, dy, tapes)
    298 
--> 299         vjp_tapes, processing_fn = qml.gradients.batch_vjp(
    300             tapes, dy, self._gradient_transform, gradient_kwargs=self._gradient_kwargs
    301         )

/usr/local/lib/python3.10/dist-packages/pennylane/gradients/vjp.py in batch_vjp(tapes, dys, gradient_fn, reduction, gradient_kwargs)
    500     # Loop through the tapes and dys vector
    501     for tape, dy in zip(tapes, dys):
--> 502         g_tapes, fn = vjp(tape, dy, gradient_fn, gradient_kwargs=gradient_kwargs)
    503         reshape_info.append(len(g_tapes))
    504         processing_fns.append(fn)

/usr/local/lib/python3.10/dist-packages/pennylane/gradients/vjp.py in vjp(tape, dy, gradient_fn, gradient_kwargs)
    361         pass
    362 
--> 363     gradient_tapes, fn = gradient_fn(tape, **gradient_kwargs)
    364 
    365     def processing_fn(results, num=None):

/usr/local/lib/python3.10/dist-packages/pennylane/transforms/core/transform_dispatcher.py in __call__(self, *targs, **tkwargs)
     98                 start = 0
     99                 for tape in expanded_tapes:
--> 100                     intermediate_tapes, post_processing_fn = self._transform(
    101                         tape, *targs, **tkwargs
    102                     )

/usr/local/lib/python3.10/dist-packages/pennylane/gradients/parameter_shift.py in param_shift(tape, argnum, shifts, gradient_recipes, fallback_fn, f0, broadcast)
   1110     transform_name = "parameter-shift rule"
   1111     assert_no_state_returns(tape.measurements, transform_name)
-> 1112     assert_no_trainable_tape_batching(tape, transform_name)
   1113 
   1114     if argnum is None and not tape.trainable_params:

/usr/local/lib/python3.10/dist-packages/pennylane/gradients/gradient_transform.py in assert_no_trainable_tape_batching(tape, transform_name)
     95     for idx in range(len(tape.trainable_params)):
     96         if tape.get_operation(idx)[0].batch_size is not None:
---> 97             raise NotImplementedError(
     98                 "Computing the gradient of broadcasted tapes with respect to the broadcasted "
     99                 f"parameters using the {transform_name} gradient transform is currently not "

NotImplementedError: Computing the gradient of broadcasted tapes with respect to the broadcasted parameters using the parameter-shift rule gradient transform is currently not supported. See #4462 for details.

System information

Name: PennyLane
Version: 0.37.0
Summary: PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.
Home-page: https://github.com/PennyLaneAI/pennylane
Author: 
Author-email: 
License: Apache License 2.0
Location: /usr/local/lib/python3.10/dist-packages
Requires: appdirs, autograd, autoray, cachetools, networkx, numpy, packaging, pennylane-lightning, requests, rustworkx, scipy, semantic-version, toml, typing-extensions
Required-by: PennyLane_Lightning

Platform info:           Linux-6.1.85+-x86_64-with-glibc2.35
Python version:          3.10.12
Numpy version:           1.26.4
Scipy version:           1.13.1
Installed devices:
- lightning.qubit (PennyLane_Lightning-0.37.0)
- default.clifford (PennyLane-0.37.0)
- default.gaussian (PennyLane-0.37.0)
- default.mixed (PennyLane-0.37.0)
- default.qubit (PennyLane-0.37.0)
- default.qubit.autograd (PennyLane-0.37.0)
- default.qubit.jax (PennyLane-0.37.0)
- default.qubit.legacy (PennyLane-0.37.0)
- default.qubit.tf (PennyLane-0.37.0)
- default.qubit.torch (PennyLane-0.37.0)
- default.qutrit (PennyLane-0.37.0)
- default.qutrit.mixed (PennyLane-0.37.0)
- default.tensor (PennyLane-0.37.0)
- null.qubit (PennyLane-0.37.0)

Existing GitHub issues

mews6 commented 3 months ago

Given the error


/usr/local/lib/python3.10/dist-packages/pennylane/gradients/gradient_transform.py in assert_no_trainable_tape_batching(tape, transform_name)
     95     for idx in range(len(tape.trainable_params)):
     96         if tape.get_operation(idx)[0].batch_size is not None:
---> 97             raise NotImplementedError(
     98                 "Computing the gradient of broadcasted tapes with respect to the broadcasted "
     99                 f"parameters using the {transform_name} gradient transform is currently not "

Would this imply there is some behavior not implemented for diff_method='parameter-shift?

josh146 commented 3 months ago

@mews6 yep that's correct! We never updated the parameter-shift rule to support broadcasting, however it seems that the torch layer is providing the parameter-shift rule with a broadcasted tape, which is breaking. @dwierichs may have more technical details here.

dwierichs commented 3 months ago

As @josh146 and the error message say, if trainable parameters are batched/broadcasted, param_shift can not handle that.

However, oftentimes the training data is batched, whereas the trainable parameters are not batched. Could this be the case here, and the batched parameters can actually be marked as non-trainable? Non-trainable batched parameters are supported by param_shift.