Pesadon / university

The most important projects that I have worked on during my university studies
0 stars 0 forks source link

As a user, I want to open the game when I click it's icon so that I can play it #14

Open Calistex opened 2 weeks ago

Calistex commented 2 weeks ago

Acceptance criteria: create the executable and launch the game when doubleclicking it

LordMixy commented 1 week ago
// SPDX-License-Identifier: GPL-2.0
/*
 * CPUFreq governor based on scheduler-provided CPU utilization data.
 *
 * Copyright (C) 2016, Intel Corporation
 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 */

#define IOWAIT_BOOST_MIN    (SCHED_CAPACITY_SCALE / 8)

struct sugov_tunables {
    struct gov_attr_set attr_set;
    unsigned int        rate_limit_us;
};

struct sugov_policy {
    struct cpufreq_policy   *policy;

    struct sugov_tunables   *tunables;
    struct list_head    tunables_hook;

    raw_spinlock_t      update_lock;
    u64         last_freq_update_time;
    s64         freq_update_delay_ns;
    unsigned int        next_freq;
    unsigned int        cached_raw_freq;

    /* The next fields are only needed if fast switch cannot be used: */
    struct          irq_work irq_work;
    struct          kthread_work work;
    struct          mutex work_lock;
    struct          kthread_worker worker;
    struct task_struct  *thread;
    bool            work_in_progress;

    bool            limits_changed;
    bool            need_freq_update;
};

struct sugov_cpu {
    struct update_util_data update_util;
    struct sugov_policy *sg_policy;
    unsigned int        cpu;

    bool            iowait_boost_pending;
    unsigned int        iowait_boost;
    u64         last_update;

    unsigned long       util;
    unsigned long       bw_min;

    /* The field below is for single-CPU policies only: */
#ifdef CONFIG_NO_HZ_COMMON
    unsigned long       saved_idle_calls;
#endif
};

static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);

/************************ Governor internals ***********************/

static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
    s64 delta_ns;

    /*
     * Since cpufreq_update_util() is called with rq->lock held for
     * the @target_cpu, our per-CPU data is fully serialized.
     *
     * However, drivers cannot in general deal with cross-CPU
     * requests, so while get_next_freq() will work, our
     * sugov_update_commit() call may not for the fast switching platforms.
     *
     * Hence stop here for remote requests if they aren't supported
     * by the hardware, as calculating the frequency is pointless if
     * we cannot in fact act on it.
     *
     * This is needed on the slow switching platforms too to prevent CPUs
     * going offline from leaving stale IRQ work items behind.
     */
    if (!cpufreq_this_cpu_can_update(sg_policy->policy))
        return false;

    if (unlikely(sg_policy->limits_changed)) {
        sg_policy->limits_changed = false;
        sg_policy->need_freq_update = true;
        return true;
    }

    delta_ns = time - sg_policy->last_freq_update_time;

    return delta_ns >= sg_policy->freq_update_delay_ns;
}

static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
                   unsigned int next_freq)
{
    if (sg_policy->need_freq_update)
        sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
    else if (sg_policy->next_freq == next_freq)
        return false;

    sg_policy->next_freq = next_freq;
    sg_policy->last_freq_update_time = time;

    return true;
}

static void sugov_deferred_update(struct sugov_policy *sg_policy)
{
    if (!sg_policy->work_in_progress) {
        sg_policy->work_in_progress = true;
        irq_work_queue(&sg_policy->irq_work);
    }
}

/**
 * get_capacity_ref_freq - get the reference frequency that has been used to
 * correlate frequency and compute capacity for a given cpufreq policy. We use
 * the CPU managing it for the arch_scale_freq_ref() call in the function.
 * @policy: the cpufreq policy of the CPU in question.
 *
 * Return: the reference CPU frequency to compute a capacity.
 */
static __always_inline
unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
{
    unsigned int freq = arch_scale_freq_ref(policy->cpu);

    if (freq)
        return freq;

    if (arch_scale_freq_invariant())
        return policy->cpuinfo.max_freq;

    /*
     * Apply a 25% margin so that we select a higher frequency than
     * the current one before the CPU is fully busy:
     */
    return policy->cur + (policy->cur >> 2);
}

/**
 * get_next_freq - Compute a new frequency for a given cpufreq policy.
 * @sg_policy: schedutil policy object to compute the new frequency for.
 * @util: Current CPU utilization.
 * @max: CPU capacity.
 *
 * If the utilization is frequency-invariant, choose the new frequency to be
 * proportional to it, that is
 *
 * next_freq = C * max_freq * util / max
 *
 * Otherwise, approximate the would-be frequency-invariant utilization by
 * util_raw * (curr_freq / max_freq) which leads to
 *
 * next_freq = C * curr_freq * util_raw / max
 *
 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
 *
 * The lowest driver-supported frequency which is equal or greater than the raw
 * next_freq (as calculated above) is returned, subject to policy min/max and
 * cpufreq driver limitations.
 */
static unsigned int get_next_freq(struct sugov_policy *sg_policy,
                  unsigned long util, unsigned long max)
{
    struct cpufreq_policy *policy = sg_policy->policy;
    unsigned int freq;

    freq = get_capacity_ref_freq(policy);
    freq = map_util_freq(util, freq, max);

    if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
        return sg_policy->next_freq;

    sg_policy->cached_raw_freq = freq;
    return cpufreq_driver_resolve_freq(policy, freq);
}

unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
                 unsigned long min,
                 unsigned long max)
{
    /* Add dvfs headroom to actual utilization */
    actual = map_util_perf(actual);
    /* Actually we don't need to target the max performance */
    if (actual < max)
        max = actual;

    /*
     * Ensure at least minimum performance while providing more compute
     * capacity when possible.
     */
    return max(min, max);
}

static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
{
    unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);

    if (!scx_switched_all())
        util += cpu_util_cfs_boost(sg_cpu->cpu);
    util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
    util = max(util, boost);
    sg_cpu->bw_min = min;
    sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
}

/**
 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
 * @sg_cpu: the sugov data for the CPU to boost
 * @time: the update time from the caller
 * @set_iowait_boost: true if an IO boost has been requested
 *
 * The IO wait boost of a task is disabled after a tick since the last update
 * of a CPU. If a new IO wait boost is requested after more then a tick, then
 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
 * efficiency by ignoring sporadic wakeups from IO.
 */
static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
                   bool set_iowait_boost)
{
    s64 delta_ns = time - sg_cpu->last_update;

    /* Reset boost only if a tick has elapsed since last request */
    if (delta_ns <= TICK_NSEC)
        return false;

    sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
    sg_cpu->iowait_boost_pending = set_iowait_boost;

    return true;
}

/**
 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
 * @sg_cpu: the sugov data for the CPU to boost
 * @time: the update time from the caller
 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
 *
 * Each time a task wakes up after an IO operation, the CPU utilization can be
 * boosted to a certain utilization which doubles at each "frequent and
 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
 * of the maximum OPP.
 *
 * To keep doubling, an IO boost has to be requested at least once per tick,
 * otherwise we restart from the utilization of the minimum OPP.
 */
static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
                   unsigned int flags)
{
    bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;

    /* Reset boost if the CPU appears to have been idle enough */
    if (sg_cpu->iowait_boost &&
        sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
        return;

    /* Boost only tasks waking up after IO */
    if (!set_iowait_boost)
        return;

    /* Ensure boost doubles only one time at each request */
    if (sg_cpu->iowait_boost_pending)
        return;
    sg_cpu->iowait_boost_pending = true;

    /* Double the boost at each request */
    if (sg_cpu->iowait_boost) {
        sg_cpu->iowait_boost =
            min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
        return;
    }

    /* First wakeup after IO: start with minimum boost */
    sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
}

/**
 * sugov_iowait_apply() - Apply the IO boost to a CPU.
 * @sg_cpu: the sugov data for the cpu to boost
 * @time: the update time from the caller
 * @max_cap: the max CPU capacity
 *
 * A CPU running a task which woken up after an IO operation can have its
 * utilization boosted to speed up the completion of those IO operations.
 * The IO boost value is increased each time a task wakes up from IO, in
 * sugov_iowait_apply(), and it's instead decreased by this function,
 * each time an increase has not been requested (!iowait_boost_pending).
 *
 * A CPU which also appears to have been idle for at least one tick has also
 * its IO boost utilization reset.
 *
 * This mechanism is designed to boost high frequently IO waiting tasks, while
 * being more conservative on tasks which does sporadic IO operations.
 */
static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
                   unsigned long max_cap)
{
    /* No boost currently required */
    if (!sg_cpu->iowait_boost)
        return 0;

    /* Reset boost if the CPU appears to have been idle enough */
    if (sugov_iowait_reset(sg_cpu, time, false))
        return 0;

    if (!sg_cpu->iowait_boost_pending) {
        /*
         * No boost pending; reduce the boost value.
         */
        sg_cpu->iowait_boost >>= 1;
        if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
            sg_cpu->iowait_boost = 0;
            return 0;
        }
    }

    sg_cpu->iowait_boost_pending = false;

    /*
     * sg_cpu->util is already in capacity scale; convert iowait_boost
     * into the same scale so we can compare.
     */
    return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
}

#ifdef CONFIG_NO_HZ_COMMON
static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
{
    unsigned long idle_calls;
    bool ret;

    /*
     * The heuristics in this function is for the fair class. For SCX, the
     * performance target comes directly from the BPF scheduler. Let's just
     * follow it.
     */
    if (scx_switched_all())
        return false;

    /* if capped by uclamp_max, always update to be in compliance */
    if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)))
        return false;

    /*
     * Maintain the frequency if the CPU has not been idle recently, as
     * reduction is likely to be premature.
     */
    idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
    ret = idle_calls == sg_cpu->saved_idle_calls;

    sg_cpu->saved_idle_calls = idle_calls;
    return ret;
}
#else
static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
#endif /* CONFIG_NO_HZ_COMMON */

/*
 * Make sugov_should_update_freq() ignore the rate limit when DL
 * has increased the utilization.
 */
static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
{
    if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
        sg_cpu->sg_policy->limits_changed = true;
}

static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
                          u64 time, unsigned long max_cap,
                          unsigned int flags)
{
    unsigned long boost;

    sugov_iowait_boost(sg_cpu, time, flags);
    sg_cpu->last_update = time;

    ignore_dl_rate_limit(sg_cpu);

    if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
        return false;

    boost = sugov_iowait_apply(sg_cpu, time, max_cap);
    sugov_get_util(sg_cpu, boost);

    return true;
}

static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
                     unsigned int flags)
{
    struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
    struct sugov_policy *sg_policy = sg_cpu->sg_policy;
    unsigned int cached_freq = sg_policy->cached_raw_freq;
    unsigned long max_cap;
    unsigned int next_f;

    max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);

    if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
        return;

    next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);

    if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq &&
        !sg_policy->need_freq_update) {
        next_f = sg_policy->next_freq;

        /* Restore cached freq as next_freq has changed */
        sg_policy->cached_raw_freq = cached_freq;
    }

    if (!sugov_update_next_freq(sg_policy, time, next_f))
        return;

    /*
     * This code runs under rq->lock for the target CPU, so it won't run
     * concurrently on two different CPUs for the same target and it is not
     * necessary to acquire the lock in the fast switch case.
     */
    if (sg_policy->policy->fast_switch_enabled) {
        cpufreq_driver_fast_switch(sg_policy->policy, next_f);
    } else {
        raw_spin_lock(&sg_policy->update_lock);
        sugov_deferred_update(sg_policy);
        raw_spin_unlock(&sg_policy->update_lock);
    }
}

static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
                     unsigned int flags)
{
    struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
    unsigned long prev_util = sg_cpu->util;
    unsigned long max_cap;

    /*
     * Fall back to the "frequency" path if frequency invariance is not
     * supported, because the direct mapping between the utilization and
     * the performance levels depends on the frequency invariance.
     */
    if (!arch_scale_freq_invariant()) {
        sugov_update_single_freq(hook, time, flags);
        return;
    }

    max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);

    if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
        return;

    if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util)
        sg_cpu->util = prev_util;

    cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
                   sg_cpu->util, max_cap);

    sg_cpu->sg_policy->last_freq_update_time = time;
}

static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
{
    struct sugov_policy *sg_policy = sg_cpu->sg_policy;
    struct cpufreq_policy *policy = sg_policy->policy;
    unsigned long util = 0, max_cap;
    unsigned int j;

    max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);

    for_each_cpu(j, policy->cpus) {
        struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
        unsigned long boost;

        boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
        sugov_get_util(j_sg_cpu, boost);

        util = max(j_sg_cpu->util, util);
    }

    return get_next_freq(sg_policy, util, max_cap);
}

static void
sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
{
    struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
    struct sugov_policy *sg_policy = sg_cpu->sg_policy;
    unsigned int next_f;

    raw_spin_lock(&sg_policy->update_lock);

    sugov_iowait_boost(sg_cpu, time, flags);
    sg_cpu->last_update = time;

    ignore_dl_rate_limit(sg_cpu);

    if (sugov_should_update_freq(sg_policy, time)) {
        next_f = sugov_next_freq_shared(sg_cpu, time);

        if (!sugov_update_next_freq(sg_policy, time, next_f))
            goto unlock;

        if (sg_policy->policy->fast_switch_enabled)
            cpufreq_driver_fast_switch(sg_policy->policy, next_f);
        else
            sugov_deferred_update(sg_policy);
    }
unlock:
    raw_spin_unlock(&sg_policy->update_lock);
}

static void sugov_work(struct kthread_work *work)
{
    struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
    unsigned int freq;
    unsigned long flags;

    /*
     * Hold sg_policy->update_lock shortly to handle the case where:
     * in case sg_policy->next_freq is read here, and then updated by
     * sugov_deferred_update() just before work_in_progress is set to false
     * here, we may miss queueing the new update.
     *
     * Note: If a work was queued after the update_lock is released,
     * sugov_work() will just be called again by kthread_work code; and the
     * request will be proceed before the sugov thread sleeps.
     */
    raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
    freq = sg_policy->next_freq;
    sg_policy->work_in_progress = false;
    raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);

    mutex_lock(&sg_policy->work_lock);
    __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
    mutex_unlock(&sg_policy->work_lock);
}

static void sugov_irq_work(struct irq_work *irq_work)
{
    struct sugov_policy *sg_policy;

    sg_policy = container_of(irq_work, struct sugov_policy, irq_work);

    kthread_queue_work(&sg_policy->worker, &sg_policy->work);
}

/************************** sysfs interface ************************/

static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);

static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
    return container_of(attr_set, struct sugov_tunables, attr_set);
}

static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
    struct sugov_tunables *tunables = to_sugov_tunables(attr_set);

    return sprintf(buf, "%u\n", tunables->rate_limit_us);
}

static ssize_t
rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
{
    struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
    struct sugov_policy *sg_policy;
    unsigned int rate_limit_us;

    if (kstrtouint(buf, 10, &rate_limit_us))
        return -EINVAL;

    tunables->rate_limit_us = rate_limit_us;

    list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
        sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;

    return count;
}

static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);

static struct attribute *sugov_attrs[] = {
    &rate_limit_us.attr,
    NULL
};
ATTRIBUTE_GROUPS(sugov);

static void sugov_tunables_free(struct kobject *kobj)
{
    struct gov_attr_set *attr_set = to_gov_attr_set(kobj);

    kfree(to_sugov_tunables(attr_set));
}

static const struct kobj_type sugov_tunables_ktype = {
    .default_groups = sugov_groups,
    .sysfs_ops = &governor_sysfs_ops,
    .release = &sugov_tunables_free,
};

/********************** cpufreq governor interface *********************/

#ifdef CONFIG_ENERGY_MODEL
static void rebuild_sd_workfn(struct work_struct *work)
{
    rebuild_sched_domains_energy();
}

static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);

/*
 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
 * on governor changes to make sure the scheduler knows about it.
 */
static void sugov_eas_rebuild_sd(void)
{
    /*
     * When called from the cpufreq_register_driver() path, the
     * cpu_hotplug_lock is already held, so use a work item to
     * avoid nested locking in rebuild_sched_domains().
     */
    schedule_work(&rebuild_sd_work);
}
#else
static inline void sugov_eas_rebuild_sd(void) { };
#endif

struct cpufreq_governor schedutil_gov;

static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
    struct sugov_policy *sg_policy;

    sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
    if (!sg_policy)
        return NULL;

    sg_policy->policy = policy;
    raw_spin_lock_init(&sg_policy->update_lock);
    return sg_policy;
}

static void sugov_policy_free(struct sugov_policy *sg_policy)
{
    kfree(sg_policy);
}

static int sugov_kthread_create(struct sugov_policy *sg_policy)
{
    struct task_struct *thread;
    struct sched_attr attr = {
        .size       = sizeof(struct sched_attr),
        .sched_policy   = SCHED_DEADLINE,
        .sched_flags    = SCHED_FLAG_SUGOV,
        .sched_nice = 0,
        .sched_priority = 0,
        /*
         * Fake (unused) bandwidth; workaround to "fix"
         * priority inheritance.
         */
        .sched_runtime  = NSEC_PER_MSEC,
        .sched_deadline = 10 * NSEC_PER_MSEC,
        .sched_period   = 10 * NSEC_PER_MSEC,
    };
    struct cpufreq_policy *policy = sg_policy->policy;
    int ret;

    /* kthread only required for slow path */
    if (policy->fast_switch_enabled)
        return 0;

    kthread_init_work(&sg_policy->work, sugov_work);
    kthread_init_worker(&sg_policy->worker);
    thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
                "sugov:%d",
                cpumask_first(policy->related_cpus));
    if (IS_ERR(thread)) {
        pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
        return PTR_ERR(thread);
    }

    ret = sched_setattr_nocheck(thread, &attr);
    if (ret) {
        kthread_stop(thread);
        pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
        return ret;
    }

    sg_policy->thread = thread;
    kthread_bind_mask(thread, policy->related_cpus);
    init_irq_work(&sg_policy->irq_work, sugov_irq_work);
    mutex_init(&sg_policy->work_lock);

    wake_up_process(thread);

    return 0;
}

static void sugov_kthread_stop(struct sugov_policy *sg_policy)
{
    /* kthread only required for slow path */
    if (sg_policy->policy->fast_switch_enabled)
        return;

    kthread_flush_worker(&sg_policy->worker);
    kthread_stop(sg_policy->thread);
    mutex_destroy(&sg_policy->work_lock);
}

static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
    struct sugov_tunables *tunables;

    tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
    if (tunables) {
        gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
        if (!have_governor_per_policy())
            global_tunables = tunables;
    }
    return tunables;
}

static void sugov_clear_global_tunables(void)
{
    if (!have_governor_per_policy())
        global_tunables = NULL;
}

static int sugov_init(struct cpufreq_policy *policy)
{
    struct sugov_policy *sg_policy;
    struct sugov_tunables *tunables;
    int ret = 0;

    /* State should be equivalent to EXIT */
    if (policy->governor_data)
        return -EBUSY;

    cpufreq_enable_fast_switch(policy);

    sg_policy = sugov_policy_alloc(policy);
    if (!sg_policy) {
        ret = -ENOMEM;
        goto disable_fast_switch;
    }

    ret = sugov_kthread_create(sg_policy);
    if (ret)
        goto free_sg_policy;

    mutex_lock(&global_tunables_lock);

    if (global_tunables) {
        if (WARN_ON(have_governor_per_policy())) {
            ret = -EINVAL;
            goto stop_kthread;
        }
        policy->governor_data = sg_policy;
        sg_policy->tunables = global_tunables;

        gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
        goto out;
    }

    tunables = sugov_tunables_alloc(sg_policy);
    if (!tunables) {
        ret = -ENOMEM;
        goto stop_kthread;
    }

    tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);

    policy->governor_data = sg_policy;
    sg_policy->tunables = tunables;

    ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
                   get_governor_parent_kobj(policy), "%s",
                   schedutil_gov.name);
    if (ret)
        goto fail;

    sugov_eas_rebuild_sd();

out:
    mutex_unlock(&global_tunables_lock);
    return 0;

fail:
    kobject_put(&tunables->attr_set.kobj);
    policy->governor_data = NULL;
    sugov_clear_global_tunables();

stop_kthread:
    sugov_kthread_stop(sg_policy);
    mutex_unlock(&global_tunables_lock);

free_sg_policy:
    sugov_policy_free(sg_policy);

disable_fast_switch:
    cpufreq_disable_fast_switch(policy);

    pr_err("initialization failed (error %d)\n", ret);
    return ret;
}

static void sugov_exit(struct cpufreq_policy *policy)
{
    struct sugov_policy *sg_policy = policy->governor_data;
    struct sugov_tunables *tunables = sg_policy->tunables;
    unsigned int count;

    mutex_lock(&global_tunables_lock);

    count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
    policy->governor_data = NULL;
    if (!count)
        sugov_clear_global_tunables();

    mutex_unlock(&global_tunables_lock);

    sugov_kthread_stop(sg_policy);
    sugov_policy_free(sg_policy);
    cpufreq_disable_fast_switch(policy);

    sugov_eas_rebuild_sd();
}

static int sugov_start(struct cpufreq_policy *policy)
{
    struct sugov_policy *sg_policy = policy->governor_data;
    void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
    unsigned int cpu;

    sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
    sg_policy->last_freq_update_time    = 0;
    sg_policy->next_freq            = 0;
    sg_policy->work_in_progress     = false;
    sg_policy->limits_changed       = false;
    sg_policy->cached_raw_freq      = 0;

    sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);

    if (policy_is_shared(policy))
        uu = sugov_update_shared;
    else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
        uu = sugov_update_single_perf;
    else
        uu = sugov_update_single_freq;

    for_each_cpu(cpu, policy->cpus) {
        struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);

        memset(sg_cpu, 0, sizeof(*sg_cpu));
        sg_cpu->cpu = cpu;
        sg_cpu->sg_policy = sg_policy;
        cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
    }
    return 0;
}

static void sugov_stop(struct cpufreq_policy *policy)
{
    struct sugov_policy *sg_policy = policy->governor_data;
    unsigned int cpu;

    for_each_cpu(cpu, policy->cpus)
        cpufreq_remove_update_util_hook(cpu);

    synchronize_rcu();

    if (!policy->fast_switch_enabled) {
        irq_work_sync(&sg_policy->irq_work);
        kthread_cancel_work_sync(&sg_policy->work);
    }
}

static void sugov_limits(struct cpufreq_policy *policy)
{
    struct sugov_policy *sg_policy = policy->governor_data;

    if (!policy->fast_switch_enabled) {
        mutex_lock(&sg_policy->work_lock);
        cpufreq_policy_apply_limits(policy);
        mutex_unlock(&sg_policy->work_lock);
    }

    sg_policy->limits_changed = true;
}

struct cpufreq_governor schedutil_gov = {
    .name           = "schedutil",
    .owner          = THIS_MODULE,
    .flags          = CPUFREQ_GOV_DYNAMIC_SWITCHING,
    .init           = sugov_init,
    .exit           = sugov_exit,
    .start          = sugov_start,
    .stop           = sugov_stop,
    .limits         = sugov_limits,
};

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
struct cpufreq_governor *cpufreq_default_governor(void)
{
    return &schedutil_gov;
}
#endif

cpufreq_governor_init(schedutil_gov);