Pines-Cheng / blog

技术博客
https://pines-cheng.github.io/blog/
546 stars 42 forks source link

WebSocket 详解 #37

Open Pines-Cheng opened 6 years ago

Pines-Cheng commented 6 years ago

WebSocket 出现前

构建网络应用的过程中,我们经常需要与服务器进行持续的通讯以保持双方信息的同步。通常这种持久通讯在不刷新页面的情况下进行,消耗一定的内存资源常驻后台,并且对于用户不可见。在 WebSocket 出现之前,我们有一下解决方案:

传统轮询(Traditional Polling)

当前Web应用中较常见的一种持续通信方式,通常采取 setInterval 或者 setTimeout 实现。例如如果我们想要定时获取并刷新页面上的数据,可以结合Ajax写出如下实现:

setInterval(function() {
    $.get("/path/to/server", function(data, status) {
        console.log(data);
    });
}, 10000);

上面的程序会每隔10秒向服务器请求一次数据,并在数据到达后存储。这个实现方法通常可以满足简单的需求,然而同时也存在着很大的缺陷:在网络情况不稳定的情况下,服务器从接收请求、发送请求到客户端接收请求的总时间有可能超过10秒,而请求是以10秒间隔发送的,这样会导致接收的数据到达先后顺序与发送顺序不一致。于是出现了采用 setTimeout 的轮询方式:

function poll() {
    setTimeout(function() {
        $.get("/path/to/server", function(data, status) {
            console.log(data);
            // 发起下一次请求
            poll();
        });
    }, 10000);
}

程序首先设置10秒后发起请求,当数据返回后再隔10秒发起第二次请求,以此类推。这样的话虽然无法保证两次请求之间的时间间隔为固定值,但是可以保证到达数据的顺序。

长轮询(Long Polling)

上面两种传统的轮询方式都存在一个严重缺陷:程序在每次请求时都会新建一个HTTP请求,然而并不是每次都能返回所需的新数据。当同时发起的请求达到一定数目时,会对服务器造成较大负担。这时我们可以采用长轮询方式解决这个问题。

长轮询与以下将要提到的服务器发送事件和WebSocket不能仅仅依靠客户端JavaScript实现,我们同时需要服务器支持并实现相应的技术。

长轮询的基本思想是在每次客户端发出请求后,服务器检查上次返回的数据与此次请求时的数据之间是否有更新,如果有更新则返回新数据并结束此次连接,否则服务器 hold住此次连接,直到有新数据时再返回相应。而这种长时间的保持连接可以通过设置一个较大的HTTP timeout` 实现。下面是一个简单的长连接示例:

服务器(PHP):

<?php
    // 示例数据为data.txt
    $filename= dirname(__FILE__)."/data.txt";
    // 从请求参数中获取上次请求到的数据的时间戳
    $lastmodif = isset( $_GET["timestamp"])? $_GET["timestamp"]: 0 ;
    // 将文件的最后一次修改时间作为当前数据的时间戳
    $currentmodif = filemtime($filename);

    // 当上次请求到的数据的时间戳*不旧于*当前文件的时间戳,使用循环"hold"住当前连接,并不断获取文件的修改时间
    while ($currentmodif <= $lastmodif) {
        // 每次刷新文件信息的时间间隔为10秒
        usleep(10000);
        // 清除文件信息缓存,保证每次获取的修改时间都是最新的修改时间
        clearstatcache();
        $currentmodif = filemtime($filename);
    }

    // 返回数据和最新的时间戳,结束此次连接
    $response = array();
    $response["msg"] =Date("h:i:s")." ".file_get_contents($filename);
    $response["timestamp"]= $currentmodif;
    echo json_encode($response);
?>

客户端:

function longPoll (timestamp) {
    var _timestamp;
    $.get("/path/to/server?timestamp=" + timestamp)
    .done(function(res) {
        try {
            var data = JSON.parse(res);
            console.log(data.msg);
            _timestamp = data.timestamp;
        } catch (e) {}
    })
    .always(function() {
        setTimeout(function() {
            longPoll(_timestamp || Date.now()/1000);
        }, 10000);
    });
}

长轮询可以有效地解决传统轮询带来的带宽浪费,但是每次连接的保持是以消耗服务器资源为代价的。尤其对于Apache+PHP 服务器,由于有默认的 worker threads 数目的限制,当长连接较多时,服务器便无法对新请求进行相应。

服务器发送事件(Server-Sent Event)

服务器发送事件(以下简称SSE)是HTML 5规范的一个组成部分,可以实现服务器到客户端的单向数据通信。通过 SSE ,客户端可以自动获取数据更新,而不用重复发送HTTP请求。一旦连接建立,“事件”便会自动被推送到客户端。服务器端SSE通过 事件流(Event Stream) 的格式产生并推送事件。事件流对应的 MIME类型 为 text/event-stream ,包含四个字段:event、data、id和retry。event表示事件类型,data表示消息内容,id用于设置客户端 EventSource 对象的 last event ID string 内部属性,retry指定了重新连接的时间。

服务器(PHP):

<?php
    header("Content-Type: text/event-stream");
    header("Cache-Control: no-cache");
    // 每隔1秒发送一次服务器的当前时间
    while (1) {
        $time = date("r");
        echo "event: ping\n";
        echo "data: The server time is: {$time}\n\n";
        ob_flush();
        flush();
        sleep(1);
    }
?>

客户端中,SSE借由 EventSource 对象实现。EventSource 包含五个外部属性:onerror, onmessage, onopen, readyState、url,以及两个内部属性:reconnection timelast event ID string。在onerror属性中我们可以对错误捕获和处理,而 onmessage 则对应着服务器事件的接收和处理。另外也可以使用 addEventListener 方法来监听服务器发送事件,根据event字段区分处理。

客户端:

var eventSource = new EventSource("/path/to/server");
eventSource.onmessage = function (e) {
    console.log(e.event, e.data);
}
// 或者
eventSource.addEventListener("ping", function(e) {
    console.log(e.event, e.data);
}, false);

SSE相较于轮询具有较好的实时性,使用方法也非常简便。然而SSE只支持服务器到客户端单向的事件推送,而且所有版本的IE(包括到目前为止的Microsoft Edge)都不支持SSE。如果需要强行支持IE和部分移动端浏览器,可以尝试 EventSource Polyfill(本质上仍然是轮询)。SSE的浏览器支持情况如下图所示:

image

对比

>>>>>>>>>>>> 传统轮询 长轮询 服务器发送事件 WebSocket
浏览器支持 几乎所有现代浏览器 几乎所有现代浏览器 Firefox 6+ Chrome 6+ Safari 5+ Opera 10.1+ IE 10+ Edge Firefox 4+ Chrome 4+ Safari 5+ Opera 11.5+
服务器负载 较少的CPU资源,较多的内存资源和带宽资源 与传统轮询相似,但是占用带宽较少 与长轮询相似,除非每次发送请求后服务器不需要断开连接 无需循环等待(长轮询),CPU和内存资源不以客户端数量衡量,而是以客户端事件数衡量。四种方式里性能最佳。
客户端负载 占用较多的内存资源与请求数。 与传统轮询相似。 浏览器中原生实现,占用资源很小。 同Server-Sent Event。
延迟 非实时,延迟取决于请求间隔。 同传统轮询。 非实时,默认3秒延迟,延迟可自定义。 实时。
实现复杂度 非常简单。 需要服务器配合,客户端实现非常简单。 需要服务器配合,而客户端实现甚至比前两种更简单。 需要Socket程序实现和额外端口,客户端实现简单。

WebSocket 是什么

WebSocket 协议在2008年诞生,2011年成为国际标准。所有浏览器都已经支持了。

WebSocket同样是HTML 5规范的组成部分之一,现标准版本为 RFC 6455。WebSocket 相较于上述几种连接方式,实现原理较为复杂,用一句话概括就是:客户端向 WebSocket 服务器通知(notify)一个带有所有 接收者ID(recipients IDs) 的事件(event),服务器接收后立即通知所有活跃的(active)客户端,只有ID在接收者ID序列中的客户端才会处理这个事件。由于 WebSocket 本身是基于TCP协议的,所以在服务器端我们可以采用构建 TCP Socket 服务器的方式来构建 WebSocket 服务器。

这个 WebSocket 是一种全新的协议。它将 TCP 的 Socket(套接字)应用在了web page上,从而使通信双方建立起一个保持在活动状态连接通道,并且属于全双工(双方同时进行双向通信)。

其实是这样的,WebSocket 协议是借用 HTTP协议 的 101 switch protocol 来达到协议转换的,从HTTP协议切换成WebSocket通信协议。

它的最大特点就是,服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对话,属于服务器推送技术的一种。其他特点包括:

协议

WebSocket协议被设计来取代现有的使用HTTP作为传输层的双向通信技术,并受益于现有的基础设施(代理、过滤、身份验证)。

概述

本协议有两部分:握手和数据传输。

来自客户端的握手看起来像如下形式:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

来自服务器的握手看起来像如下形式:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

来自客户端的首行遵照 Request-Line 格式。 来自服务器的首行遵照 Status-Line 格式。

Request-Line 和 Status-Line 制品定义在 RFC2616

一旦客户端和服务器都发送了它们的握手,且如果握手成功,接着开始数据传输部分。 这是一个每一端都可以的双向通信信道,彼此独立,随意发生数据。

一个成功握手之后,客户端和服务器来回地传输数据,在本规范中提到的概念单位为“消息”。 在线路上,一个消息是由一个或多个帧的组成。 WebSocket 的消息并不一定对应于一个特定的网络层帧,可以作为一个可以被一个中间件合并或分解的片段消息。

一个帧有一个相应的类型。 属于相同消息的每一帧包含相同类型的数据。 从广义上讲,有文本数据类型(它被解释为 UTF-8 RFC3629文本)、二进制数据类型(它的解释是留给应用)、和控制帧类型(它是不准备包含用于应用的数据,而是协议级的信号,例如应关闭连接的信号)。这个版本的协议定义了六个帧类型并保留10以备将来使用。

握手

客户端:申请协议升级

首先,客户端发起协议升级请求。可以看到,采用的是标准的 HTTP 报文格式,且只支持GET方法。

GET / HTTP/1.1
Host: localhost:8080
Origin: http://127.0.0.1:3000
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: w4v7O6xFTi36lq3RNcgctw==

重点请求首部意义如下:

服务端:响应协议升级

服务端返回内容如下,状态代码101表示协议切换。到此完成协议升级,后续的数据交互都按照新的协议来。

HTTP/1.1 101 Switching Protocols
Connection:Upgrade
Upgrade: websocket
Sec-WebSocket-Accept: Oy4NRAQ13jhfONC7bP8dTKb4PTU=

Sec-WebSocket-Accept

Sec-WebSocket-Accept 根据客户端请求首部的 Sec-WebSocket-Key 计算出来。

计算公式为:

Sec-WebSocket-Key258EAFA5-E914-47DA-95CA-C5AB0DC85B11 拼接。

通过 SHA1 计算出摘要,并转成 base64 字符串。

伪代码如下:

>toBase64( sha1( Sec-WebSocket-Key + 258EAFA5-E914-47DA-95CA-C5AB0DC85B11 )  )

数据帧

WebSocket 客户端、服务端通信的最小单位是 帧(frame),由 1 个或多个帧组成一条完整的 消息(message)

数据帧格式概览

用于数据传输部分的报文格式是通过本节中详细描述的 ABNF 来描述。

下面给出了 WebSocket 数据帧的统一格式。熟悉 TCP/IP 协议的同学对这样的图应该不陌生。

从左到右,单位是比特。比如 FINRSV1各占据 1 比特,opcode占据 4 比特。

内容包括了标识、操作代码、掩码、数据、数据长度等。

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-------+-+-------------+-------------------------------+
 |F|R|R|R| opcode|M| Payload len |    Extended payload length    |
 |I|S|S|S|  (4)  |A|     (7)     |             (16/64)           |
 |N|V|V|V|       |S|             |   (if payload len==126/127)   |
 | |1|2|3|       |K|             |                               |
 +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
 |     Extended payload length continued, if payload len == 127  |
 + - - - - - - - - - - - - - - - +-------------------------------+
 |                               |Masking-key, if MASK set to 1  |
 +-------------------------------+-------------------------------+
 | Masking-key (continued)       |          Payload Data         |
 +-------------------------------- - - - - - - - - - - - - - - - +
 :                     Payload Data continued ...                :
 + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
 |                     Payload Data continued ...                |
 +---------------------------------------------------------------+

数据帧格式详解

针对前面的格式概览图,这里逐个字段进行讲解,如有不清楚之处,可参考协议规范,或留言交流。

FIN:1 个比特。

如果是 1,表示这是 消息(message)的最后一个分片(fragment),如果是 0,表示不是是 消息(message)的最后一个 分片(fragment)

RSV1, RSV2, RSV3:各占 1 个比特。

一般情况下全为 0。当客户端、服务端协商采用 WebSocket 扩展时,这三个标志位可以非 0,且值的含义由扩展进行定义。如果出现非零的值,且并没有采用 WebSocket 扩展,连接出错。

Opcode: 4 个比特。

操作代码,Opcode 的值决定了应该如何解析后续的 数据载荷(data payload)。如果操作代码是不认识的,那么接收端应该 断开连接(fail the connection)。可选的操作代码如下:

Mask: 1 个比特。

表示是否要对数据载荷进行掩码操作。从客户端向服务端发送数据时,需要对数据进行掩码操作;从服务端向客户端发送数据时,不需要对数据进行掩码操作

如果服务端接收到的数据没有进行过掩码操作,服务端需要断开连接。

如果 Mask 是 1,那么在 Masking-key 中会定义一个 掩码键(masking key),并用这个掩码键来对数据载荷进行反掩码。所有客户端发送到服务端的数据帧,Mask 都是 1。

Payload length:数据载荷的长度

单位是字节。为 7 位,或 7+16 位,或 1+64 位。

假设数 Payload length === x,如果

此外,如果 payload length 占用了多个字节的话,payload length 的二进制表达采用 网络序(big endian,重要的位在前)

Masking-key:0 或 4 字节(32 位)

所有从客户端传送到服务端的数据帧,数据载荷都进行了掩码操作,Mask 为 1,且携带了 4 字节的 Masking-key。如果 Mask 为 0,则没有 Masking-key

备注:载荷数据的长度,不包括 mask key 的长度。

Payload data:(x+y) 字节

载荷数据:包括了扩展数据、应用数据。其中,扩展数据 x 字节,应用数据 y 字节。

扩展数据:如果没有协商使用扩展的话,扩展数据数据为 0 字节。所有的扩展都必须声明扩展数据的长度,或者可以如何计算出扩展数据的长度。此外,扩展如何使用必须在握手阶段就协商好。如果扩展数据存在,那么载荷数据长度必须将扩展数据的长度包含在内。

应用数据:任意的应用数据,在扩展数据之后(如果存在扩展数据),占据了数据帧剩余的位置。载荷数据长度 减去 扩展数据长度,就得到应用数据的长度。

掩码算法

掩码键(Masking-key)是由客户端挑选出来的 32 位的随机数。掩码操作不会影响数据载荷的长度。掩码、反掩码操作都采用如下算法:

首先,假设:

算法描述为: original-octet-i 与 masking-key-octet-j 异或后,得到 transformed-octet-i。

j  = i MOD 4
transformed-octet-i = original-octet-i XOR masking-key-octet-j

数据传递

一旦 WebSocket 客户端、服务端建立连接后,后续的操作都是基于数据帧的传递。

WebSocket 根据 opcode 来区分操作的类型。比如0x8表示断开连接,0x0-0x2 表示数据交互。

数据分片

WebSocket 的每条消息可能被切分成多个数据帧。当 WebSocket 的接收方收到一个数据帧时,会根据FIN的值来判断,是否已经收到消息的最后一个数据帧。

FIN=1 表示当前数据帧为消息的最后一个数据帧,此时接收方已经收到完整的消息,可以对消息进行处理。FIN=0,则接收方还需要继续监听接收其余的数据帧。

此外,opcode 在数据交换的场景下,表示的是数据的类型。0x01表示文本,0x02表示二进制。而0x00比较特殊,表示延续帧(continuation frame),顾名思义,就是完整消息对应的数据帧还没接收完。

连接保持 + 心跳

WebSocket 为了保持客户端、服务端的实时双向通信,需要确保客户端、服务端之间的 TCP 通道保持连接没有断开。然而,对于长时间没有数据往来的连接,如果依旧长时间保持着,可能会浪费包括的连接资源。

但不排除有些场景,客户端、服务端虽然长时间没有数据往来,但仍需要保持连接。这个时候,可以采用心跳来实现。

ping、pong 的操作,对应的是 WebSocket 的两个控制帧,opcode分别是 0x9、0xA

关闭连接

一旦发送或接收到一个Close控制帧,这就是说,_WebSocket 关闭阶段握手已启动,且 WebSocket 连接处于 CLOSING 状态。

当底层TCP连接已关闭,这就是说 WebSocket连接已关闭 且 WebSocket 连接处于 CLOSED 状态。 如果 TCP 连接在 WebSocket 关闭阶段已经完成后被关闭,WebSocket连接被说成已经 完全地 关闭了。

如果WebSocket连接不能被建立,这就是说,WebSocket连接关闭,但不是 完全的 。

状态码

当关闭一个已经建立的连接(例如,当在打开阶段握手已经完成后发送一个关闭帧),端点可以表明关闭的原因。 由端点解释这个原因,并且端点应该给这个原因采取动作,本规范是没有定义的。 本规范定义了一组预定义的状态码,并指定哪些范围可以被扩展、框架和最终应用使用。 状态码和任何相关的文本消息是关闭帧的可选的组件。

当发送关闭帧时端点可以使用如下预定义的状态码。

状态码 名称 描述
0–999 保留段, 未使用.
1000 CLOSE_NORMAL 正常关闭; 无论为何目的而创建, 该链接都已成功完成任务.
1001 CLOSE_GOING_AWAY 终端离开, 可能因为服务端错误, 也可能因为浏览器正从打开连接的页面跳转离开.
1002 CLOSE_PROTOCOL_ERROR 由于协议错误而中断连接.
1003 CLOSE_UNSUPPORTED 由于接收到不允许的数据类型而断开连接 (如仅接收文本数据的终端接收到了二进制数据).
1004 保留. 其意义可能会在未来定义.
1005 CLOSE_NO_STATUS 保留.  表示没有收到预期的状态码.
1006 CLOSE_ABNORMAL 保留. 用于期望收到状态码时连接非正常关闭 (也就是说, 没有发送关闭帧).
1007 Unsupported Data 由于收到了格式不符的数据而断开连接 (如文本消息中包含了非 UTF-8 数据).
1008 Policy Violation 由于收到不符合约定的数据而断开连接. 这是一个通用状态码, 用于不适合使用 1003 和 1009 状态码的场景.
1009 CLOSE_TOO_LARGE 由于收到过大的数据帧而断开连接.
1010 Missing Extension 客户端期望服务器商定一个或多个拓展, 但服务器没有处理, 因此客户端断开连接.
1011 Internal Error 客户端由于遇到没有预料的情况阻止其完成请求, 因此服务端断开连接.
1012 Service Restart 服务器由于重启而断开连接.
1013 Try Again Later 服务器由于临时原因断开连接, 如服务器过载因此断开一部分客户端连接.
1014 由 WebSocket 标准保留以便未来使用.
1015 TLS Handshake 保留. 表示连接由于无法完成 TLS 握手而关闭 (例如无法验证服务器证书).
1016–1999 由 WebSocket 标准保留以便未来使用.
2000–2999 由 WebSocket 拓展保留使用.
3000–3999 可以由库或框架使用.不应由应用使用. 可以在 IANA 注册, 先到先得.
4000–4999 可以由应用使用.

客户端的 API

WebSocket 构造函数

WebSocket 对象提供了用于创建和管理 WebSocket 连接,以及可以通过该连接发送和接收数据的 API。

WebSocket 构造器方法接受一个必须的参数和一个可选的参数:

WebSocket WebSocket(in DOMString url, in optional DOMString protocols);
WebSocket WebSocket(in DOMString url,in optional DOMString[] protocols);

参数

构造器方法可能抛出以下异常:SECURITY_ERR 试图连接的端口被屏蔽。

var ws = new WebSocket('ws://localhost:8080');

执行上面语句之后,客户端就会与服务器进行连接。

属性

属性名 类型 描述
binaryType DOMString 一个字符串表示被传输二进制的内容的类型。取值应当是"blob"或者"arraybuffer"。"blob"表示使用DOM Blob 对象,而"arraybuffer"表示使用 ArrayBuffer 对象。
bufferedAmount unsigned long 调用 [send()](https://developer.mozilla.org/zh-CN/docs/Web/API/WebSocket#send()) 方法将多字节数据加入到队列中等待传输,但是还未发出。该值会在所有队列数据被发送后重置为 0。而当连接关闭时不会设为0。如果持续调用send(),这个值会持续增长。只读。
extensions DOMString 服务器选定的扩展。目前这个属性只是一个空字符串,或者是一个包含所有扩展的列表。
onclose EventListener 用于监听连接关闭事件监听器。当 WebSocket 对象的readyState 状态变为 CLOSED 时会触发该事件。这个监听器会接收一个叫close的 CloseEvent 对象。
onerror EventListener 当错误发生时用于监听error事件的事件监听器。会接受一个名为“error”的event对象。
onmessage EventListener 一个用于消息事件的事件监听器,这一事件当有消息到达的时候该事件会触发。这个Listener会被传入一个名为"message"的 MessageEvent 对象。
onopen EventListener 一个用于连接打开事件的事件监听器。当readyState的值变为 OPEN 的时候会触发该事件。该事件表明这个连接已经准备好接受和发送数据。这个监听器会接受一个名为"open"的事件对象。
protocol DOMString 一个表明服务器选定的子协议名字的字符串。这个属性的取值会被取值为构造器传入的protocols参数。
readyState unsigned short 连接的当前状态。取值是 Ready state constants 之一。 只读。
url DOMString 传入构造器的URL。它必须是一个绝对地址的URL。只读。

webSocket.onopen

实例对象的 onopen 属性,用于指定连接成功后的回调函数。

ws.onopen = function () {
  ws.send('Hello Server!');
}

如果要指定多个回调函数,可以使用addEventListener方法。

ws.addEventListener('open', function (event) {
  ws.send('Hello Server!');
});

webSocket.onclose

实例对象的 onclose 属性,用于指定连接关闭后的回调函数。

ws.onclose = function(event) {
  var code = event.code;
  var reason = event.reason;
  var wasClean = event.wasClean;
  // handle close event
};

ws.addEventListener("close", function(event) {
  var code = event.code;
  var reason = event.reason;
  var wasClean = event.wasClean;
  // handle close event
});

webSocket.onmessage

实例对象的 onmessage 属性,用于指定收到服务器数据后的回调函数。

ws.onmessage = function(event) {
  var data = event.data;
  // 处理数据
};

ws.addEventListener("message", function(event) {
  var data = event.data;
  // 处理数据
});

注意,服务器数据可能是文本,也可能是 二进制数据(blob对象或Arraybuffer对象)。

ws.onmessage = function(event){
  if(typeof event.data === String) {
    console.log("Received data string");
  }

  if(event.data instanceof ArrayBuffer){
    var buffer = event.data;
    console.log("Received arraybuffer");
  }
}

除了动态判断收到的数据类型,也可以使用 binaryType 属性,显式指定收到的二进制数据类型。

// 收到的是 blob 数据
ws.binaryType = "blob";
ws.onmessage = function(e) {
  console.log(e.data.size);
};

// 收到的是 ArrayBuffer 数据
ws.binaryType = "arraybuffer";
ws.onmessage = function(e) {
  console.log(e.data.byteLength);
};

常量

Ready state 常量

这些常量是 readyState 属性的取值,可以用来描述 WebSocket 连接的状态。

常量 描述
CONNECTING 0 连接还没开启。
OPEN 1 连接已开启并准备好进行通信。
CLOSING 2 连接正在关闭的过程中。
CLOSED 3 连接已经关闭,或者连接无法建立。

方法

close()

关闭 WebSocket 连接或停止正在进行的连接请求。如果连接的状态已经是 closed,这个方法不会有任何效果

void close(in optional unsigned short code, in optional DOMString reason);

code 可选

一个数字值表示关闭连接的状态号,表示连接被关闭的原因。如果这个参数没有被指定,默认的取值是1000 (表示正常连接关闭)。 请看 CloseEvent 页面的 list of status codes来看默认的取值。

reason 可选

一个可读的字符串,表示连接被关闭的原因。这个字符串必须是不长于123字节的UTF-8 文本(不是字符)。

可能抛出的异常

send()

通过 WebSocket 连接向服务器发送数据。

void send(in DOMString data);
void send(in ArrayBuffer data);
void send(in Blob data); 

data:要发送到服务器的数据。

可能抛出的异常:

发送文本的例子。

ws.send('your message');

发送 Blob 对象的例子。

var file = document
  .querySelector('input[type="file"]')
  .files[0];
ws.send(file);

发送 ArrayBuffer 对象的例子。

// Sending canvas ImageData as ArrayBuffer
var img = canvas_context.getImageData(0, 0, 400, 320);
var binary = new Uint8Array(img.data.length);
for (var i = 0; i < img.data.length; i++) {
  binary[i] = img.data[i];
}
ws.send(binary.buffer);

服务端的实现

WebSocket 服务器的实现,可以查看维基百科的列表

常用的 Node 实现有以下三种。

问答

和TCP、HTTP协议的关系

WebSocket 是基于 TCP 的独立的协议。它与 HTTP 唯一的关系是它的握手是由 HTTP 服务器解释为一个 Upgrade 请求。

WebSocket协议试图在现有的 HTTP 基础设施上下文中解决现有的双向HTTP技术目标;同样,它被设计工作在HTTP端口80和443,也支持HTTP代理和中间件,

HTTP服务器需要发送一个“Upgrade”请求,即101 Switching Protocol到HTTP服务器,然后由服务器进行协议转换。

Sec-WebSocket-Key/Accept 的作用

前面提到了,Sec-WebSocket-Key/Sec-WebSocket-Accept 在主要作用在于提供基础的防护,减少恶意连接、意外连接。

作用大致归纳如下:

避免服务端收到非法的 websocket 连接(比如 http 客户端不小心请求连接 websocket 服务,此时服务端可以直接拒绝连接)

确保服务端理解 websocket 连接。因为 ws 握手阶段采用的是 http 协议,因此可能 ws 连接是被一个 http 服务器处理并返回的,此时客户端可以通过 Sec-WebSocket-Key 来确保服务端认识 ws 协议。(并非百分百保险,比如总是存在那么些无聊的 http 服务器,光处理 Sec-WebSocket-Key,但并没有实现 ws 协议。。。)

用浏览器里发起 ajax 请求,设置 header 时,Sec-WebSocket-Key 以及其他相关的 header 是被禁止的。这样可以避免客户端发送 ajax 请求时,意外请求协议升级(websocket upgrade)

可以防止反向代理(不理解 ws 协议)返回错误的数据。比如反向代理前后收到两次 ws 连接的升级请求,反向代理把第一次请求的返回给 cache 住,然后第二次请求到来时直接把 cache 住的请求给返回(无意义的返回)。

Sec-WebSocket-Key 主要目的并不是确保数据的安全性,因为 Sec-WebSocket-KeySec-WebSocket-Accept 的转换计算公式是公开的,而且非常简单,最主要的作用是预防一些常见的意外情况(非故意的)。

数据掩码的作用

WebSocket 协议中,数据掩码的作用是增强协议的安全性。但数据掩码并不是为了保护数据本身,因为算法本身是公开的,运算也不复杂。除了加密通道本身,似乎没有太多有效的保护通信安全的办法。

那么为什么还要引入掩码计算呢,除了增加计算机器的运算量外似乎并没有太多的收益(这也是不少同学疑惑的点)。

答案还是两个字:安全。但并不是为了防止数据泄密,而是为了防止早期版本的协议中存在的代理缓存污染攻击(proxy cache poisoning attacks)等问题。

参考

xiebruce commented 5 years ago
// 每次刷新文件信息的时间间隔为10秒
usleep(10000);

不错,不过这个usleep的单位是微秒不是毫秒,所以你这10000其实是0.01秒,而不是10秒,这么写有可能直接down机

ghost commented 5 years ago

请问 为什么有时间 opopen 回调会失效? 我在一个方法的回调中调用 handleWs(),如下:ws 是我定义在vue实例原型上面的方法,此时,直接使用注释代码可以,但是使用 opopen 方法就不会进入函数。请问这是为什么呢? methods: { handleWs(userInfo){ let ws = this.ws; console.log(ws.readyState, 'readyState') console.log(userInfo, 'user') // switch (ws.readyState) { // case 1: // ws.send(userInfo.userId); // break // } ws.onopen = function(evt) { console.log("Connection open ...", user); ws.send(userInfo.userId); }; ws.onmessage = function(evt){ console.log(evt.data) } }, }

Pines-Cheng commented 3 years ago

实际应用中,如果需要 Websocke 进行双向数据通信,Socket.io 是一个非常好的选择。其实 github上面也有通过 JS 封装好的 Websocket 库,ws 可用于 client 和基于 node 搭建的服务端使用,但是用起来相对繁琐,star 相对 Socket.io 较少,所以不推荐使用。

Socket.io 不是 Websocket,它只是将 Websocket 和轮询 (Polling)机制以及其它的实时通信方式封装成了通用的接口,并且在服务端实现了这些实时机制的相应代码。也就是说,Websocket 仅仅是 Socket.io 实现实时通信的一个子集。因此 Websocket 客户端连接不上 Socket.io 服务端,当然 Socket.io 客户端也连接不上 Websocket 服务端。