PoSeiDon-Workflows / FlowGAD

Workflow Anomaly Detection with Graph Neural Networks
MIT License
0 stars 0 forks source link

Invest the structural information in job-level anomaly #19

Open cshjin opened 1 year ago

cshjin commented 1 year ago
cshjin commented 1 year ago

Model comparison

Model Acc. F1 Prec. Recall ROC-AUC Conf Mat
MLP(X) 0.8003 0.7375 0.7577 0.8003 0.5354 [[26986, 490], [ 6397, 623]]
MLP(X+P) 0.8017 0.7412 0.7620 0.8017 0.5401 [[26961, 515], [ 6325, 695]]
GCN(X, A) 0.8077 0.7480 0.7831 0.8077 0.5479 [[27092, 384], [ 6248, 772]]
GCN(X+P, A) 0.7954 0.7644 0.7591 0.7954 0.5845 [[25832, 1644], [ 5413, 1607]]
GAT(X, A) 0.7964 0.7062 0.6344 0.7964 0.5 [[27476, 0], [ 7020, 0]]
GAT(X+P, A) 0.7964 0.7062 0.6344 0.7964 0.5 [[27476, 0], [ 7020, 0]]
GraphSAGE(X, A) 0.8134 0.7704 0.7872 0.8134 0.5812 [[26731, 745], [ 5689, 1331]]
GraphSAGE(X+P, A) 0.8089 0.7672 0.7774 0.8089 0.5784 [[26576, 900], [ 5689, 1331]]

check the commit: 89eca0b

cshjin commented 1 year ago

image image

cshjin commented 1 year ago

HPS

w/o clean data w/ clean data
MLP 0.8076 0.9610
GraphSAGE 0.8487 0.9668